IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i527p1050-1062.html
   My bibliography  Save this article

Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets

Author

Listed:
  • Furong Li
  • Huiyan Sang

Abstract

Spatial regression models have been widely used to describe the relationship between a response variable and some explanatory variables over a region of interest, taking into account the spatial dependence of the observations. In many applications, relationships between response variables and covariates are expected to exhibit complex spatial patterns. We propose a new approach, referred to as spatially clustered coefficient (SCC) regression, to detect spatially clustered patterns in the regression coefficients. It incorporates spatial neighborhood information through a carefully constructed regularization to automatically detect change points in space and to achieve computational scalability. Our numerical studies suggest that SCC works very effectively, capturing not only clustered coefficients, but also smoothly varying coefficients because of its strong local adaptivity. This flexibility allows researchers to explore various spatial structures in regression coefficients. We also establish theoretical properties of SCC. We use SCC to explore the relationship between the temperature and salinity of sea water in the Atlantic basin; this can provide important insights about the evolution of individual water masses and the pathway and strength of meridional overturning circulation in oceanography. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Furong Li & Huiyan Sang, 2019. "Spatial Homogeneity Pursuit of Regression Coefficients for Large Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1050-1062, July.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1050-1062
    DOI: 10.1080/01621459.2018.1529595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1529595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1529595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    2. Zhihua Ma & Yishu Xue & Guanyu Hu, 2019. "Heterogeneous Regression Models for Clusters of Spatial Dependent Data," Papers 1907.02212, arXiv.org, revised Apr 2020.
    3. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    4. Wang, Xin & Zhu, Zhengyuan & Zhang, Hao Helen, 2023. "Spatial heterogeneity automatic detection and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Shan Yu & Aaron M. Kusmec & Li Wang & Dan Nettleton, 2023. "Fusion Learning of Functional Linear Regression with Application to Genotype-by-Environment Interaction Studies," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 401-422, September.
    6. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    7. Xin Wang & Xin Zhang, 2024. "Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data," Environmetrics, John Wiley & Sons, Ltd., vol. 35(5), August.
    8. Mohamed-Salem Ahmed & Lionel Cucala & Michaël Genin, 2021. "Spatial autoregressive models for scan statistic," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-20, December.
    9. A. Stewart Fotheringham & M. Sachdeva, 2022. "Scale and local modeling: new perspectives on the modifiable areal unit problem and Simpson’s paradox," Journal of Geographical Systems, Springer, vol. 24(3), pages 475-499, July.
    10. Yuan Yan & Hsin-Cheng Huang & Marc G. Genton, 2021. "Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 387-408, September.
    11. Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    12. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    13. Guanyu Hu & Yishu Xue & Zhihua Ma, 2020. "Bayesian Clustered Coefficients Regression with Auxiliary Covariates Assistant Random Effects," Papers 2004.12022, arXiv.org, revised Aug 2021.
    14. Lijiang Geng & Guanyu Hu, 2022. "Bayesian spatial homogeneity pursuit for survival data with an application to the SEER respiratory cancer data," Biometrics, The International Biometric Society, vol. 78(2), pages 536-547, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:527:p:1050-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.