Changepoint detection in autocorrelated ordinal categorical time series
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2752
Download full text from publisher
References listed on IDEAS
- Bai, J., 1994. "Stochastic Equicontinuity and Weak Convergence of Unbounded Sequential Empirical Proceses," Working papers 94-07, Massachusetts Institute of Technology (MIT), Department of Economics.
- Michael Robbins & Colin Gallagher & Robert Lund & Alexander Aue, 2011. "Mean shift testing in correlated data," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 498-511, September.
- Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
- Giron, Javier & Ginebra, Josep & Riba, Alex, 2005. "Bayesian Analysis of a Multinomial Sequence and Homogeneity of Literary Style," The American Statistician, American Statistical Association, vol. 59, pages 19-30, February.
- Jushan Bai, 1993. "On The Partial Sums Of Residuals In Autoregressive And Moving Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 247-260, May.
- Robbins, Michael W. & Lund, Robert B. & Gallagher, Colin M. & Lu, QiQi, 2011. "Changepoints in the North Atlantic Tropical Cyclone Record," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 89-99.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Varin, Cristiano & Vidoni, Paolo, 2006. "Pairwise likelihood inference for ordinal categorical time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2365-2373, December.
- Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
- Edit Gombay & Fuxiao Li & Hao Yu, 2017. "Retrospective change detection in categorical time series," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(14), pages 6831-6845, July.
- Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
- Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & Colin Gallagher & Robert Lund & Michael Robbins, 2012. "Changepoint detection in daily precipitation data," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 407-419, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Willams B. F. da Silva & Pedro M. Almeida‐Junior & Abraão D. C. Nascimento, 2023. "Generalized gamma ARMA process for synthetic aperture radar amplitude and intensity data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
- Christopher Dienes & Alexander Aue, 2014. "On-Line Monitoring Of Pollution Concentrations With Autoregressive Moving Average Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 239-261, May.
- Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
- Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.
- Stefan Albert & Michael Messer & Julia Schiemann & Jochen Roeper & Gaby Schneider, 2017. "Multi-Scale Detection of Variance Changes in Renewal Processes in the Presence of Rate Change Points," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1028-1052, November.
- Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
- Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
- Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024.
"Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Cambridge Working Papers in Economics 2367, Faculty of Economics, University of Cambridge.
- Hong, Y. & Linton, O. B. & McCabe, B. & Sun, J. & Wang, S., 2023. "Kolmogorov-Smirnov Type Testing for Structural Breaks: A New Adjusted-Range Based Self-Normalization Approach," Janeway Institute Working Papers 2316, Faculty of Economics, University of Cambridge.
- Cho, Haeran & Fryzlewicz, Piotr, 2023. "Multiple change point detection under serial dependence: wild contrast maximisation and gappy Schwarz algorithm," LSE Research Online Documents on Economics 120085, London School of Economics and Political Science, LSE Library.
- Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
- Kleiber, Christian, 2016.
"Structural Change in (Economic) Time Series,"
Working papers
2016/06, Faculty of Business and Economics - University of Basel.
- Christian Kleiber, 2017. "Structural Change in (Economic) Time Series," Papers 1702.06913, arXiv.org.
- Michael Messer & Gaby Schneider, 2017. "The shark fin function: asymptotic behavior of the filtered derivative for point processes in case of change points," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 253-272, July.
- McGonigle, Euan T. & Cho, Haeran, 2023. "Robust multiscale estimation of time-average variance for time series segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Chun Yip Yau & Zifeng Zhao, 2016. "Inference for multiple change points in time series via likelihood ratio scan statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 895-916, September.
- Lijing Ma & Andrew J. Grant & Georgy Sofronov, 2020. "Multiple change point detection and validation in autoregressive time series data," Statistical Papers, Springer, vol. 61(4), pages 1507-1528, August.
- Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Pedro Galeano & Dominik Wied, 2017. "Dating multiple change points in the correlation matrix," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 331-352, June.
- Yunwei Cui & Rongning Wu & Qi Zheng, 2021. "Estimation of change‐point for a class of count time series models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1277-1313, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:7:n:e2752. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.