IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i3d10.1007_s10463-023-00892-4.html
   My bibliography  Save this article

Data segmentation for time series based on a general moving sum approach

Author

Listed:
  • Claudia Kirch

    (Otto-von-Guericke University
    Center for Behavioral Brain Science (CBBS))

  • Kerstin Reckruehm

    (Otto-von-Guericke University)

Abstract

We consider the multiple change point problem in a general framework based on estimating equations. This extends classical sample mean-based methodology to include robust methods but also different types of changes such as changes in linear regression or changes in count data including Poisson autoregressive time series. In this framework, we derive a general theory proving consistency for the number of change points and rates of convergence for the estimators of the locations of the change points. More precisely, two different types of MOSUM (moving sum) statistics are considered: A MOSUM-Wald statistic based on differences of local estimators and a MOSUM-score statistic based on a global inspection parameter. The latter is usually computationally less involved in particular in nonlinear problems where no closed form of the estimator is known such that numerical methods are required. Finally, we evaluate the methodology by some simulations as well as using geophysical well-log data.

Suggested Citation

  • Claudia Kirch & Kerstin Reckruehm, 2024. "Data segmentation for time series based on a general moving sum approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 393-421, June.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:3:d:10.1007_s10463-023-00892-4
    DOI: 10.1007/s10463-023-00892-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00892-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00892-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:3:d:10.1007_s10463-023-00892-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.