IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i14p6831-6845.html
   My bibliography  Save this article

Retrospective change detection in categorical time series

Author

Listed:
  • Edit Gombay
  • Fuxiao Li
  • Hao Yu

Abstract

The aim of this paper is to propose methods of detecting change in the coefficients of a multinomial logistic regression model for categorical time series offline. The alternatives to the null hypothesis of stationarity can be either the hypothesis that it is not true, or that there is a temporary change in the sequence. We use the efficient score vector of the partial likelihood function. This has several advantages. First, the alternative value of the parameter does not have to be estimated; hence, we have a procedure that has a simple structure with only one parameter estimation using all available observations. This is in contrast with the generalized likelihood ratio-based change point tests. The efficient score vector is used in various ways. As a vector, its components correspond to the different components of the multinomial logistic regression model’s parameter vector. Using its quadratic form a test can be defined, where the presence of a change in any or all parameters is tested for. If there are too many parameters one can test for any subset while treating the rest as nuisance parameters. Our motivating example is a DNA sequence of four categories, and our test result shows that in the published data the distribution of the four categories is not stationary.

Suggested Citation

  • Edit Gombay & Fuxiao Li & Hao Yu, 2017. "Retrospective change detection in categorical time series," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(14), pages 6831-6845, July.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:14:p:6831-6845
    DOI: 10.1080/03610926.2015.1137595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1137595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1137595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mo Li & QiQi Lu, 2022. "Changepoint detection in autocorrelated ordinal categorical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:14:p:6831-6845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.