IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v38y2017i6p1028-1052.html
   My bibliography  Save this article

Multi-Scale Detection of Variance Changes in Renewal Processes in the Presence of Rate Change Points

Author

Listed:
  • Stefan Albert
  • Michael Messer
  • Julia Schiemann
  • Jochen Roeper
  • Gaby Schneider

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefan Albert & Michael Messer & Julia Schiemann & Jochen Roeper & Gaby Schneider, 2017. "Multi-Scale Detection of Variance Changes in Renewal Processes in the Presence of Rate Change Points," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1028-1052, November.
  • Handle: RePEc:bla:jtsera:v:38:y:2017:i:6:p:1028-1052
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12254
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klaus Frick & Axel Munk & Hannes Sieling, 2014. "Multiscale change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 495-580, June.
    2. Inclan, Carla, 1993. "Detection of Multiple Changes of Variance Using Posterior Odds," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 289-300, July.
    3. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    4. Michael Messer & Gaby Schneider, 2017. "The shark fin function: asymptotic behavior of the filtered derivative for point processes in case of change points," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 253-272, July.
    5. D. A. Hsu, 1977. "Tests for Variance Shift at an Unknown Time Point," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 279-284, November.
    6. Wenzhi Zhao & Zheng Tian & Zhiming Xia, 2010. "Ratio test for variance change point in linear process with long memory," Statistical Papers, Springer, vol. 51(2), pages 397-407, June.
    7. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    8. David S. Matteson & Nicholas A. James, 2014. "A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 334-345, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Messer & Stefan Albert & Gaby Schneider, 2018. "The multiple filter test for change point detection in time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 589-607, August.
    2. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Messer, 2022. "Bivariate change point detection: Joint detection of changes in expectation and variance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 886-916, June.
    2. Michael Messer & Stefan Albert & Gaby Schneider, 2018. "The multiple filter test for change point detection in time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 589-607, August.
    3. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    4. Michael Messer & Gaby Schneider, 2017. "The shark fin function: asymptotic behavior of the filtered derivative for point processes in case of change points," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 253-272, July.
    5. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    6. Kucharczyk, Daniel & Wyłomańska, Agnieszka & Sikora, Grzegorz, 2018. "Variance change point detection for fractional Brownian motion based on the likelihood ratio test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 439-450.
    7. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    8. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
    9. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    10. McGonigle, Euan T. & Cho, Haeran, 2023. "Robust multiscale estimation of time-average variance for time series segmentation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    11. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    12. Chun Yip Yau & Zifeng Zhao, 2016. "Inference for multiple change points in time series via likelihood ratio scan statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 895-916, September.
    13. Lijing Ma & Andrew J. Grant & Georgy Sofronov, 2020. "Multiple change point detection and validation in autoregressive time series data," Statistical Papers, Springer, vol. 61(4), pages 1507-1528, August.
    14. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    15. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    16. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    17. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    18. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    19. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    20. Chen, Zhanshou & Xu, Qiongyao & Li, Huini, 2019. "Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics," Economics Letters, Elsevier, vol. 179(C), pages 53-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:38:y:2017:i:6:p:1028-1052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.