IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v33y2022i7ne2751.html
   My bibliography  Save this article

Association between air pollution and COVID‐19 disease severity via Bayesian multinomial logistic regression with partially missing outcomes

Author

Listed:
  • Lauren Hoskovec
  • Sheena Martenies
  • Tori L. Burket
  • Sheryl Magzamen
  • Ander Wilson

Abstract

Recent ecological analyses suggest air pollution exposure may increase susceptibility to and severity of coronavirus disease 2019 (COVID‐19). Individual‐level studies are needed to clarify the relationship between air pollution exposure and COVID‐19 outcomes. We conduct an individual‐level analysis of long‐term exposure to air pollution and weather on peak COVID‐19 severity. We develop a Bayesian multinomial logistic regression model with a multiple imputation approach to impute partially missing health outcomes. Our approach is based on the stick‐breaking representation of the multinomial distribution, which offers computational advantages, but presents challenges in interpreting regression coefficients. We propose a novel inferential approach to address these challenges. In a simulation study, we demonstrate our method's ability to impute missing outcome data and improve estimation of regression coefficients compared to a complete case analysis. In our analysis of 55,273 COVID‐19 cases in Denver, Colorado, increased annual exposure to fine particulate matter in the year prior to the pandemic was associated with increased risk of severe COVID‐19 outcomes. We also found COVID‐19 disease severity to be associated with interactions between exposures. Our individual‐level analysis fills a gap in the literature and helps to elucidate the association between long‐term exposure to air pollution and COVID‐19 outcomes.

Suggested Citation

  • Lauren Hoskovec & Sheena Martenies & Tori L. Burket & Sheryl Magzamen & Ander Wilson, 2022. "Association between air pollution and COVID‐19 disease severity via Bayesian multinomial logistic regression with partially missing outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.
  • Handle: RePEc:wly:envmet:v:33:y:2022:i:7:n:e2751
    DOI: 10.1002/env.2751
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2751
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silvia Comunian & Dario Dongo & Chiara Milani & Paola Palestini, 2020. "Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality," IJERPH, MDPI, vol. 17(12), pages 1-22, June.
    2. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    3. A. P. Alencar & B. R. Santos, 2014. "Association of pollution with quantiles and expectations of the hospitalization rate of elderly people by respiratory diseases in the city of São Paulo, Brazil," Environmetrics, John Wiley & Sons, Ltd., vol. 25(3), pages 165-171, May.
    4. Xiangyu Zheng & Bin Guo & Jing He & Song Xi Chen, 2021. "Effects of corona virus disease‐19 control measures on air quality in North China," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariaelena Bottazzi Schenone & Elena Grimaccia & Maurizio Vichi, 2024. "Structural equation models for simultaneous modeling of air pollutants," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sounak Chakraborty & Tanujit Dey & Yoonbae Jun & Chae Young Lim & Anish Mukherjee & Francesca Dominici, 2022. "A Spatiotemporal Analytical Outlook of the Exposure to Air Pollution and COVID-19 Mortality in the USA," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 419-439, September.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    4. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    5. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    6. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    7. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Daniel Cirkovic & Thomas J. Fisher, 2021. "On testing for the equality of autocovariance in time series," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
    9. Tamás Krisztin & Philipp Piribauer, 2021. "A Bayesian spatial autoregressive logit model with an empirical application to European regional FDI flows," Empirical Economics, Springer, vol. 61(1), pages 231-257, July.
    10. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    11. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    12. Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
    13. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    14. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    15. Yeonhee Park & Suyu Liu & Peter F. Thall & Ying Yuan, 2022. "Bayesian group sequential enrichment designs based on adaptive regression of response and survival time on baseline biomarkers," Biometrics, The International Biometric Society, vol. 78(1), pages 60-71, March.
    16. Carter Allen & Yuzhou Chang & Brian Neelon & Won Chang & Hang J. Kim & Zihai Li & Qin Ma & Dongjun Chung, 2023. "A Bayesian multivariate mixture model for high throughput spatial transcriptomics," Biometrics, The International Biometric Society, vol. 79(3), pages 1775-1787, September.
    17. Patrick LeBlanc & Li Ma, 2023. "Microbiome subcommunity learning with logistic‐tree normal latent Dirichlet allocation," Biometrics, The International Biometric Society, vol. 79(3), pages 2321-2332, September.
    18. Reem Aljarallah & Samer A Kharroubi, 2021. "Use of Bayesian Markov Chain Monte Carlo Methods to Model Kuwait Medical Genetic Center Data: An Application to Down Syndrome and Mental Retardation," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    19. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    20. Prateek Bansal & Rico Krueger & Michel Bierlaire & Ricardo A. Daziano & Taha H. Rashidi, 2019. "P\'olygamma Data Augmentation to address Non-conjugacy in the Bayesian Estimation of Mixed Multinomial Logit Models," Papers 1904.07688, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:7:n:e2751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.