IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v197y2024ics0167947324000744.html
   My bibliography  Save this article

Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model

Author

Listed:
  • Bodnar, Olha
  • Bodnar, Taras

Abstract

Bayesian inference procedures for the parameters of the multivariate random effects model are derived under the assumption of an elliptically contoured distribution when the Berger and Bernardo reference and the Jeffreys priors are assigned to the model parameters. A new numerical algorithm for drawing samples from the posterior distribution is developed, which is based on the hybrid Gibbs sampler. The new approach is compared to the two Metropolis-Hastings algorithms previously derived in the literature via an extensive simulation study. The findings are applied to a Bayesian multivariate meta-analysis, conducted using the results of ten studies on the effectiveness of a treatment for hypertension. The analysis investigates the treatment effects on systolic and diastolic blood pressure. The second empirical illustration deals with measurement data from the CCAUV.V-K1 key comparison, aiming to compare measurement results of sinusoidal linear accelerometers at four frequencies.

Suggested Citation

  • Bodnar, Olha & Bodnar, Taras, 2024. "Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000744
    DOI: 10.1016/j.csda.2024.107990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000744
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.