IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v197y2024ics0167947324000744.html
   My bibliography  Save this article

Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model

Author

Listed:
  • Bodnar, Olha
  • Bodnar, Taras

Abstract

Bayesian inference procedures for the parameters of the multivariate random effects model are derived under the assumption of an elliptically contoured distribution when the Berger and Bernardo reference and the Jeffreys priors are assigned to the model parameters. A new numerical algorithm for drawing samples from the posterior distribution is developed, which is based on the hybrid Gibbs sampler. The new approach is compared to the two Metropolis-Hastings algorithms previously derived in the literature via an extensive simulation study. The findings are applied to a Bayesian multivariate meta-analysis, conducted using the results of ten studies on the effectiveness of a treatment for hypertension. The analysis investigates the treatment effects on systolic and diastolic blood pressure. The second empirical illustration deals with measurement data from the CCAUV.V-K1 key comparison, aiming to compare measurement results of sinusoidal linear accelerometers at four frequencies.

Suggested Citation

  • Bodnar, Olha & Bodnar, Taras, 2024. "Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000744
    DOI: 10.1016/j.csda.2024.107990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000744
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundberg,Rolf, 2019. "Statistical Modelling by Exponential Families," Cambridge Books, Cambridge University Press, number 9781108701112, November.
    2. Dungang Liu & Regina Y. Liu & Minge Xie, 2015. "Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 326-340, March.
    3. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    4. William E. Strawderman & Andrew L. Rukhin, 2010. "Simultaneous estimation and reduction of nonconformity in interlaboratory studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 219-234, March.
    5. Andrew L. Rukhin, 2013. "Estimating heterogeneity variance in meta-analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 451-469, June.
    6. Jian Zhao & Thomas Mathew, 2018. "Some Point Estimates and Confidence Regions for Multivariate Inter-laboratory Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 147-166, December.
    7. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    8. Sundberg,Rolf, 2019. "Statistical Modelling by Exponential Families," Cambridge Books, Cambridge University Press, number 9781108476591, November.
    9. Sutradhar, Brajendra C. & Ali, Mir M., 1989. "A generalization of the Wishart distribution for the elliptical model and its moments for the multivariate t model," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 155-162, April.
    10. Han Chen & Alisa K. Manning & Josée Dupuis, 2012. "A Method of Moments Estimator for Random Effect Multivariate Meta-Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1278-1284, December.
    11. Ian R. White, 2011. "Multivariate random-effects meta-regression: Updates to mvmeta," Stata Journal, StataCorp LP, vol. 11(2), pages 255-270, June.
    12. Rukhin, Andrew L., 2007. "Estimating common vector parameters in interlaboratory studies," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 435-454, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodnar, Olha & Bodnar, Taras, 2021. "Objective Bayesian meta-analysis based on generalized multivariate random effects model," Working Papers 2021:5, Örebro University, School of Business.
    2. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    3. Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    4. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.
    5. Elena Kulinskaya & Stephan Morgenthaler & Robert G. Staudte, 2014. "Combining Statistical Evidence," International Statistical Review, International Statistical Institute, vol. 82(2), pages 214-242, August.
    6. Vassilios Bazinas & Bent Nielsen, 2022. "Causal Transmission in Reduced-Form Models," Econometrics, MDPI, vol. 10(2), pages 1-25, March.
    7. Michael Schweinberger, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 253-260, June.
    8. Frank Kwasniok, 2021. "Semiparametric maximum likelihood probability density estimation," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-33, November.
    9. Aris Spanos, 2022. "Frequentist Model-based Statistical Induction and the Replication Crisis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 133-159, September.
    10. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    11. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    12. Anindya Bhadra & Arvind Rao & Veerabhadran Baladandayuthapani, 2018. "Inferring network structure in non†normal and mixed discrete†continuous genomic data," Biometrics, The International Biometric Society, vol. 74(1), pages 185-195, March.
    13. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
    14. Ito, Tsubasa & Sugasawa, Shonosuke, 2021. "Improved confidence regions in meta-analysis of diagnostic test accuracy," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Micheas, Athanasios C. & Dey, Dipak K., 2005. "Modeling shape distributions and inferences for assessing differences in shapes," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 257-280, February.
    16. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    17. Guang Yang & Dungang Liu & Junyuan Wang & Min‐ge Xie, 2016. "Meta‐analysis framework for exact inferences with application to the analysis of rare events," Biometrics, The International Biometric Society, vol. 72(4), pages 1378-1386, December.
    18. Matthew W. Wheeler, 2019. "Bayesian additive adaptive basis tensor product models for modeling high dimensional surfaces: an application to high‐throughput toxicity testing," Biometrics, The International Biometric Society, vol. 75(1), pages 193-201, March.
    19. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    20. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.