A combined estimate of global temperature
Author
Abstract
Suggested Citation
DOI: 10.1002/env.2706
Download full text from publisher
References listed on IDEAS
- Lewandowski, Daniel & Kurowicka, Dorota & Joe, Harry, 2009. "Generating random correlation matrices based on vines and extended onion method," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1989-2001, October.
- David Bolin & Finn Lindgren, 2015. "Excursion and contour uncertainty regions for latent Gaussian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 85-106, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kevin F. Forbes, 2023. "CO2 has significant implications for hourly ambient temperature: Evidence from Hawaii," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
- Luca Aiello & Matteo Fontana & Alessandra Guglielmi, 2023. "Bayesian functional emulation of CO2 emissions on future climate change scenarios," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Yixiao & Yu, Cindy L. & Li, Haitao, 2022. "Nowcasting GDP Using Dynamic Factor Model with Unknown Number of Factors and Stochastic Volatility: A Bayesian Approach," Econometrics and Statistics, Elsevier, vol. 24(C), pages 75-93.
- Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021.
"How weather affects the decomposition of total factor productivity in U.S. agriculture,"
Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
- Plastina, Alejandro & Lence, Sergio H. & Ortiz-Bobea, Ariel, 2019. "How Weather Affects the Decomposition of Total Factor Productivity in U.S. Agriculture," ISU General Staff Papers 201911120800001087, Iowa State University, Department of Economics.
- Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
- Flórez, Alvaro J. & Molenberghs, Geert & Van der Elst, Wim & Alonso Abad, Ariel, 2022. "An efficient algorithm to assess multivariate surrogate endpoints in a causal inference framework," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
- Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
- Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
- Andrew Y. Chen & Jack McCoy, 2022. "Missing Values Handling for Machine Learning Portfolios," Papers 2207.13071, arXiv.org, revised Jan 2024.
- Gregory Benton & Wesley J. Maddox & Andrew Gordon Wilson, 2022. "Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes," Papers 2207.06544, arXiv.org.
- Juho Kettunen & Lauri Mehtätalo & Eeva‐Stiina Tuittila & Aino Korrensalo & Jarno Vanhatalo, 2024. "Joint species distribution modeling with competition for space," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
- Damaris K. Kinyoki & Samuel O. Manda & Grainne M. Moloney & Elijah O. Odundo & James A. Berkley & Abdisalan M. Noor & Ngianga-Bakwin Kandala, 2017. "Modelling the Ecological Comorbidity of Acute Respiratory Infection, Diarrhoea and Stunting among Children Under the Age of 5 Years in Somalia," International Statistical Review, International Statistical Institute, vol. 85(1), pages 164-176, April.
- Pedro Luis do N. Silva & Fernando Antônio da S. Moura, 2022. "Fitting multivariate multilevel models under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1663-1678, October.
- Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
- Dario Paape & Barbara Hemforth & Shravan Vasishth, 2018. "Processing of ellipsis with garden-path antecedents in French and German: Evidence from eye tracking," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-46, June.
- Madar, Vered, 2015. "Direct formulation to Cholesky decomposition of a general nonsingular correlation matrix," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 142-147.
- David Bolin & Vilhelm Verendel & Meta Berghauser Pont & Ioanna Stavroulaki & Oscar Ivarsson & Erik Håkansson, 2021. "Functional ANOVA modelling of pedestrian counts on streets in three European cities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1176-1198, October.
- Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
- Vuorre, Matti & Bolger, Niall, 2017. "Within-subject mediation analysis," OSF Preprints s48e2_v1, Center for Open Science.
- William Bednar & Nick Pretnar, 2019.
"Home Production with Time to Consume,"
2019 Meeting Papers
328, Society for Economic Dynamics.
- Bednar, William & Pretnar, Nick, 2020. "Home Production with Time to Consume," MPRA Paper 103730, University Library of Munich, Germany.
- Kang, Seungwoo & Oh, Hee-Seok, 2024. "Forecasting South Korea’s presidential election via multiparty dynamic Bayesian modeling," International Journal of Forecasting, Elsevier, vol. 40(1), pages 124-141.
- Wei Jin & Yang Ni & Leah H. Rubin & Amanda B. Spence & Yanxun Xu, 2022. "A Bayesian nonparametric approach for inferring drug combination effects on mental health in people with HIV," Biometrics, The International Biometric Society, vol. 78(3), pages 988-1000, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:33:y:2022:i:3:n:e2706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.