IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i1p85-106.html
   My bibliography  Save this article

Excursion and contour uncertainty regions for latent Gaussian models

Author

Listed:
  • David Bolin
  • Finn Lindgren

Abstract

type="main" xml:id="rssb12055-abs-0001"> In several areas of application ranging from brain imaging to astrophysics and geostatistics, an important statistical problem is to find regions where the process studied exceeds a certain level. Estimating such regions so that the probability for exceeding the level in the entire set is equal to some predefined value is a difficult problem connected to the problem of multiple significance testing. In this work, a method for solving this problem, as well as the related problem of finding credible regions for contour curves, for latent Gaussian models is proposed. The method is based on using a parametric family for the excursion sets in combination with a sequential importance sampling method for estimating joint probabilities. The accuracy of the method is investigated by using simulated data and an environmental application is presented.

Suggested Citation

  • David Bolin & Finn Lindgren, 2015. "Excursion and contour uncertainty regions for latent Gaussian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 85-106, January.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:85-106
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.77.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damaris K. Kinyoki & Samuel O. Manda & Grainne M. Moloney & Elijah O. Odundo & James A. Berkley & Abdisalan M. Noor & Ngianga-Bakwin Kandala, 2017. "Modelling the Ecological Comorbidity of Acute Respiratory Infection, Diarrhoea and Stunting among Children Under the Age of 5 Years in Somalia," International Statistical Review, International Statistical Institute, vol. 85(1), pages 164-176, April.
    2. Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
    3. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    4. Tobias Fissler & Jana Hlavinov'a & Birgit Rudloff, 2019. "Elicitability and Identifiability of Systemic Risk Measures," Papers 1907.01306, arXiv.org, revised Oct 2019.
    5. Hannah M. Director & Adrian E. Raftery, 2022. "Contour models for physical boundaries enclosing star‐shaped and approximately star‐shaped polygons," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1688-1720, November.
    6. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    7. Karine Hagesæther Foss & Gunhild Elisabeth Berget & Jo Eidsvik, 2022. "Using an autonomous underwater vehicle with onboard stochastic advection‐diffusion models to map excursion sets of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    8. Peter F. Craigmile & Peter Guttorp, 2022. "A combined estimate of global temperature," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    9. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    10. David Bolin & Vilhelm Verendel & Meta Berghauser Pont & Ioanna Stavroulaki & Oscar Ivarsson & Erik Håkansson, 2021. "Functional ANOVA modelling of pedestrian counts on streets in three European cities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1176-1198, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:85-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.