Machine learning for modeling animal movement
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0235750
Download full text from publisher
References listed on IDEAS
- James C. Russell & Ephraim M. Hanks & Andreas P. Modlmeier & David P. Hughes, 2017. "Modeling Collective Animal Movement Through Interactions in Behavioral States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 313-334, September.
- Ephraim M. Hanks & Devin S. Johnson & Mevin B. Hooten, 2017. "Reflected Stochastic Differential Equation Models for Constrained Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 353-372, September.
- Steffen Grünewälder & Femke Broekhuis & David Whyte Macdonald & Alan Martin Wilson & John Weldon McNutt & John Shawe-Taylor & Stephen Hailes, 2012. "Movement Activity Based Classification of Animal Behaviour with an Application to Data from Cheetah (Acinonyx jubatus)," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
- Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
- Elizabeth Eisenhauer & Ephraim Hanks, 2020. "A lattice and random intermediate point sampling design for animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
- Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
- Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
- Elizabeth Eisenhauer & Ephraim Hanks, 2020. "A lattice and random intermediate point sampling design for animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
- Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
- Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
- Cai Zongwu & Chen Linna & Fang Ying, 2012.
"A New Forecasting Model for USD/CNY Exchange Rate,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
- Zongwu Cai & Linna Chen & Ying Fang, 2013. "A New Forecasting Model for USD/CNY Exchange Rate," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Yang, Jian & Su, Xiaojing & Kolari, James W., 2008. "Do Euro exchange rates follow a martingale? Some out-of-sample evidence," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 729-740, May.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011.
"Neural networks for regional employment forecasts: are the parameters relevant?,"
Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
- Patuelli, R. & Reggiani, A. & Nijkamp, P. & Schanne, N., 2009. "Neural networks for cross-sectional employment forecasts: a comparison of model specifications for germany," Serie Research Memoranda 0014, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2009. "Neural Networks for Regional Employment Forecasts: Are the Parameters Relevant?," Working Paper series 07_09, Rimini Centre for Economic Analysis, revised Feb 2010.
- Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2009. "Neural Networks for Cross-Sectional Employment Forecasts: A Comparison of Model Specifications for Germany," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0903, USI Università della Svizzera italiana.
- Shapour Mohammadi & Ahmad Pouyanfar, 2011. "Behaviour of stock markets' memories," Applied Financial Economics, Taylor & Francis Journals, vol. 21(3), pages 183-194.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022.
""An application of deep learning for exchange rate forecasting","
IREA Working Papers
202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
- Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. "“An application of deep learning for exchange rate forecasting”," AQR Working Papers 202201, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2022.
- Preminger, Arie & Franck, Raphael, 2007.
"Forecasting exchange rates: A robust regression approach,"
International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
- PREMINGER, Arie & FRANCK, Raphael, 2005. "Forecasting exchange rates: a robust regression approach," LIDAM Discussion Papers CORE 2005025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- PREMINGER, Arie & FRANCK, Raphael, 2007. "Forecasting exchange rates: a robust regression approach," LIDAM Reprints CORE 1917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Manuel Ammann & Christian Zenkner, 2003. "Tactical Asset Allocation mit Genetischen Algorithmen," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 139(I), pages 1-40, March.
- Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
- Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
- James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
- Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
- Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020.
"Forex exchange rate forecasting using deep recurrent neural networks,"
Digital Finance, Springer, vol. 2(1), pages 69-96, September.
- Dautel, Alexander J. & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2019. "Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks," IRTG 1792 Discussion Papers 2019-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Dautel, Alexander Jakob & Härdle, Wolfgang Karl & Lessmann, Stefan & Seow, Hsin-Vonn, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," IRTG 1792 Discussion Papers 2020-006, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235750. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.