IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235750.html
   My bibliography  Save this article

Machine learning for modeling animal movement

Author

Listed:
  • Dhanushi A Wijeyakulasuriya
  • Elizabeth W Eisenhauer
  • Benjamin A Shaby
  • Ephraim M Hanks

Abstract

Animal movement drives important ecological processes such as migration and the spread of infectious disease. Current approaches to modeling animal tracking data focus on parametric models used to understand environmental effects on movement behavior and to fill in missing tracking data. Machine Learning and Deep learning algorithms are powerful and flexible predictive modeling tools but have rarely been applied to animal movement data. In this study we present a general framework for predicting animal movement that is a combination of two steps: first predicting movement behavioral states and second predicting the animal’s velocity. We specify this framework at the individual level as well as for collective movement. We use Random Forests, Neural and Recurrent Neural Networks to compare performance predicting one step ahead as well as long range simulations. We compare results against a custom constructed Stochastic Differential Equation (SDE) model. We apply this approach to high resolution ant movement data. We found that the individual level Machine Learning and Deep Learning methods outperformed the SDE model for one step ahead prediction. The SDE model did comparatively better at simulating long range movement behaviour. Of the Machine Learning and Deep Learning models the Long Short Term Memory (LSTM) individual level model did best at long range simulations. We also applied the Random Forest and LSTM individual level models to model gull migratory movement to demonstrate the generalizability of this framework. Machine Learning and deep learning models are easier to specify compared to traditional parametric movement models which can have restrictive assumptions. However, machine learning and deep learning models are less interpretable than parametric movement models. The type of model used should be determined by the goal of the study, if the goal is prediction, our study provides evidence that machine learning and deep learning models could be useful tools.

Suggested Citation

  • Dhanushi A Wijeyakulasuriya & Elizabeth W Eisenhauer & Benjamin A Shaby & Ephraim M Hanks, 2020. "Machine learning for modeling animal movement," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
  • Handle: RePEc:plo:pone00:0235750
    DOI: 10.1371/journal.pone.0235750
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235750
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235750&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James C. Russell & Ephraim M. Hanks & Andreas P. Modlmeier & David P. Hughes, 2017. "Modeling Collective Animal Movement Through Interactions in Behavioral States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 313-334, September.
    2. Ephraim M. Hanks & Devin S. Johnson & Mevin B. Hooten, 2017. "Reflected Stochastic Differential Equation Models for Constrained Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 353-372, September.
    3. Steffen Grünewälder & Femke Broekhuis & David Whyte Macdonald & Alan Martin Wilson & John Weldon McNutt & John Shawe-Taylor & Stephen Hailes, 2012. "Movement Activity Based Classification of Animal Behaviour with an Application to Data from Cheetah (Acinonyx jubatus)," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    4. Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
    5. Elizabeth Eisenhauer & Ephraim Hanks, 2020. "A lattice and random intermediate point sampling design for animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    6. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    2. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    3. Elizabeth Eisenhauer & Ephraim Hanks, 2020. "A lattice and random intermediate point sampling design for animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    4. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    7. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    8. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    9. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    10. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    11. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    12. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    13. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    14. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Thomas M Newsome & Guy-Anthony Ballard & Christopher R Dickman & Peter J S Fleming & Chris Howden, 2013. "Anthropogenic Resource Subsidies Determine Space Use by Australian Arid Zone Dingoes: An Improved Resource Selection Modelling Approach," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    16. Carlos R. Barrera Chaupis, 2018. "Inventory Adjustments to Demand Shocks under Flexible Specifications," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 149-201, january-j.
    17. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    18. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    19. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    20. H. Peter Boswijk & Philip Hans Franses & Dick van Dijk, 2000. "Asymmetric and Common Absorption of Shocks in Nonlinear Autoregressive Models," Econometric Society World Congress 2000 Contributed Papers 0765, Econometric Society.
    21. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.