IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i5p1356-1377.html
   My bibliography  Save this article

Assessing local influence for nonlinear structural equation models with ignorable missing data

Author

Listed:
  • Lee, Sik-Yum
  • Lu, Bin
  • Song, Xin-Yuan

Abstract

No abstract is available for this item.

Suggested Citation

  • Lee, Sik-Yum & Lu, Bin & Song, Xin-Yuan, 2006. "Assessing local influence for nonlinear structural equation models with ignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1356-1377, March.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:5:p:1356-1377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(04)00388-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sik-Yum Lee & S. Wang, 1996. "Sensitivity analysis of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 93-108, March.
    2. Shu-Jia Wang & Sik-Yum Lee, 1996. "Sensitivity analysis of structural equation models with equality functional constraints," Computational Statistics & Data Analysis, Elsevier, vol. 23(2), pages 239-256, December.
    3. Sik-Yum Lee & Hong-Tu Zhu, 2002. "Maximum likelihood estimation of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 189-210, June.
    4. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    5. C. Kwan & W. Fung, 1998. "Assessing local influence for specific restricted likelihood: Application to factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 63(1), pages 35-46, March.
    6. Lee, Sik-Yum & Xu, Liang, 2004. "Influence analyses of nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 321-341, March.
    7. Pan, Jian-Xin & Fang, Kai-Tai & Liski, Erkki P., 1996. "Bayesian Local Influence for the Growth Curve Model with Rao's Simple Covariance Structure," Journal of Multivariate Analysis, Elsevier, vol. 58(1), pages 55-81, July.
    8. Lee, Sik-Yum & Song, Xin-Yuan, 2003. "Maximum likelihood estimation and model comparison of nonlinear structural equation models with continuous and polytomous variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 125-142, October.
    9. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    10. Tanaka, Yutaka & Zhang, Fanghong, 1999. "R-mode and Q-mode influence analyses in statistical modelling: relationship between influence function approach and local influence approach," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 197-218, December.
    11. Wai-Yin Poon & Shu-Jia Wang & Sik-Yum Lee, 1999. "Influence analysis of structural equation models with polytomous variables," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 461-473, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filidor Vilca & Camila Borelli Zeller & Gauss M. Cordeiro, 2015. "The sinh-normal/independent nonlinear regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1659-1676, August.
    2. Rocío Maehara & Heleno Bolfarine & Filidor Vilca & N. Balakrishnan, 2021. "A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(7), pages 1049-1080, October.
    3. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    4. Juliana Fachini & Edwin Ortega & Francisco Louzada-Neto, 2008. "Influence diagnostics for polyhazard models in the presence of covariates," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(4), pages 413-433, October.
    5. Carlos A. Dos Santos & Daniele C. T. Granzotto & Vera L. D. Tomazella & Francisco Louzada, 2018. "Hierarchical Transmuted Log-Logistic Model: A Subjective Bayesian Analysis," JRFM, MDPI, vol. 11(1), pages 1-12, March.
    6. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "A robust extension of the bivariate Birnbaum–Saunders distribution and associated inference," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 418-435.
    7. Silva, Giovana Oliveira & Ortega, Edwin M.M. & Cancho, Vicente G. & Barreto, Mauricio Lima, 2008. "Log-Burr XII regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3820-3842, March.
    8. Xu, Liang & Lee, Sik-Yum & Poon, Wai-Yin, 2006. "Deletion measures for generalized linear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1131-1146, November.
    9. Graciliano M. S. Louredo & Camila B. Zeller & Clécio S. Ferreira, 2022. "Estimation and Influence Diagnostics for the Multivariate Linear Regression Models with Skew Scale Mixtures of Normal Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 204-242, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanaka, Yutaka & Zhang, Fanghong & Mori, Yuichi, 2003. "Local influence in principal component analysis: relationship between the local influence and influence function approaches revisited," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 143-160, October.
    2. Sik-Yum Lee & Liang Xu, 2003. "On local influence analysis of full information item factor models," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 339-360, September.
    3. Sik-Yum Lee & Nian-Sheng Tang, 2004. "Local influence analysis of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 573-592, December.
    4. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    5. Lu, Bin & Song, Xin-Yuan, 2006. "Local influence analysis of multivariate probit latent variable models," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1783-1798, September.
    6. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    7. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    8. Lucia Santana & Filidor Vilca & V�ctor Leiva, 2011. "Influence analysis in skew-Birnbaum--Saunders regression models and applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(8), pages 1633-1649, July.
    9. Qingming Zou & Zhongyi Zhu & Jinglong Wang, 2009. "Local influence analysis for penalized Gaussian likelihood estimation in partially linear single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 905-918, December.
    10. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    11. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    12. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2009. "On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1249-1263, February.
    13. Patricia Giménez & María Patat, 2014. "Local influence for functional comparative calibration models with replicated data," Statistical Papers, Springer, vol. 55(2), pages 431-454, May.
    14. Fu, Ying-Zi & Tang, Nian-Sheng & Chen, Xing, 2009. "Local influence analysis of nonlinear structural equation models with nonignorable missing outcomes from reproductive dispersion models," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3671-3684, August.
    15. Giménez, Patricia & Galea, Manuel, 2013. "Influence measures on corrected score estimators in functional heteroscedastic measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 1-15.
    16. Matos, Larissa A. & Lachos, Victor H. & Balakrishnan, N. & Labra, Filidor V., 2013. "Influence diagnostics in linear and nonlinear mixed-effects models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 450-464.
    17. Clécio S. Ferreira & Gilberto A. Paula, 2017. "Estimation and diagnostic for skew-normal partially linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 3033-3053, December.
    18. Tanaka, Yutaka & Zhang, Fanghong, 1999. "R-mode and Q-mode influence analyses in statistical modelling: relationship between influence function approach and local influence approach," Computational Statistics & Data Analysis, Elsevier, vol. 32(2), pages 197-218, December.
    19. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    20. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:5:p:1356-1377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.