IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i3d10.1007_s13253-023-00586-7.html
   My bibliography  Save this article

Spatial Confounding and Spatial+ for Nonlinear Covariate Effects

Author

Listed:
  • Emiko Dupont

    (University of Bath)

  • Nicole H. Augustin

    (University of Edinburgh)

Abstract

Regression models for spatially varying data use spatial random effects to reflect spatial correlation structure. Such random effects, however, may interfere with the covariate effect estimates and make them unreliable. This problem, known as spatial confounding, is complex and has only been studied for models with linear covariate effects. However, as illustrated by a forestry example in which we assess the effect of soil, climate, and topography variables on tree health, the covariate effects of interest are in practice often unknown and nonlinear. We consider, for the first time, spatial confounding in spatial models with nonlinear effects implemented in the generalised additive models (GAMs) framework. We show that spatial+, a recently developed method for alleviating confounding in the linear case, can be adapted to this setting. In practice, spatial+ can then be used both as a diagnostic tool for investigating whether covariate effect estimates are affected by spatial confounding and for correcting the estimates for the resulting bias when it is present. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Emiko Dupont & Nicole H. Augustin, 2024. "Spatial Confounding and Spatial+ for Nonlinear Covariate Effects," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 455-470, September.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00586-7
    DOI: 10.1007/s13253-023-00586-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00586-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00586-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    2. Schmid, Matthias & Hothorn, Torsten, 2008. "Boosting additive models using component-wise P-Splines," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 298-311, December.
    3. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    4. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    5. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    6. Ephraim M. Hanks & Erin M. Schliep & Mevin B. Hooten & Jennifer A. Hoeting, 2015. "Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 243-254, June.
    7. Andreas Mayr & Nora Fenske & Benjamin Hofner & Thomas Kneib & Matthias Schmid, 2012. "Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 403-427, May.
    8. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    9. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    10. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    11. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    12. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    2. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    3. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    4. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    5. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    6. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    7. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    8. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    9. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    10. Trevor J. Hefley & Mevin B. Hooten & Ephraim M. Hanks & Robin E. Russell & Daniel P. Walsh, 2017. "The Bayesian Group Lasso for Confounded Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(1), pages 42-59, March.
    11. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    12. Marcos O. Prates & Douglas R. M. Azevedo & Ying C. MacNab & Michael R. Willig, 2022. "Non‐separable spatio‐temporal models via transformed multivariate Gaussian Markov random fields," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1116-1136, November.
    13. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    14. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    15. Donegan, Connor & Chun, Yongwan & Hughes, Amy E., 2020. "Bayesian estimation of spatial filters with Moran's eigenvectors and hierarchical shrinkage priors," OSF Preprints fah3z, Center for Open Science.
    16. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    17. Erin M. Schliep & Alan E. Gelfand & James S. Clark & Roland Kays, 2018. "Joint Temporal Point Pattern Models for Proximate Species Occurrence in a Fixed Area Using Camera Trap Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 334-357, September.
    18. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    19. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    20. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00586-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.