IDEAS home Printed from https://ideas.repec.org/a/wly/emjrnl/v20y2017i1p52-85.html
   My bibliography  Save this article

Model‐selection tests for conditional moment restriction models

Author

Listed:
  • Yu‐Chin Hsu
  • Xiaoxia Shi

Abstract

We propose a Vuong‐type model‐selection test for models defined by conditional moment restrictions. The moment restrictions that define the models can be standard equality restrictions that point‐identify the model parameters, or moment equality or inequality restrictions that partially identify the model parameters. The test uses a new average generalized empirical likelihood criterion function designed to incorporate full restriction of the conditional model. We also introduce a new adjustment to the test statistic that makes it asymptotically pivotal whether the candidate models are nested or non‐nested. The test uses simple standard normal critical values and is shown to be asymptotically similar, to be consistent against all fixed alternatives, and to have non‐trivial power against n − 1 / 2 ‐local alternatives. Monte Carlo simulations demonstrate that the finite sample performance of the test is in accordance with the theoretical prediction.

Suggested Citation

  • Yu‐Chin Hsu & Xiaoxia Shi, 2017. "Model‐selection tests for conditional moment restriction models," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 52-85, February.
  • Handle: RePEc:wly:emjrnl:v:20:y:2017:i:1:p:52-85
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/ectj.12081
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Otsu, Taisuke & Seo, Myung Hwan & Whang, Yoon-Jae, 2012. "Testing for non-nested conditional moment restrictions using unconditional empirical likelihood," Journal of Econometrics, Elsevier, vol. 167(2), pages 370-382.
    2. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Rami V. Tabri & Christopher D. Walker, 2020. "Inference for Moment Inequalities: A Constrained Moment Selection Procedure," Papers 2008.09021, arXiv.org, revised Aug 2020.
    3. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2024. "Out-of-sample predictability in predictive regressions with many predictor candidates," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1166-1178.
    4. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    5. Francesco Bravo, 2022. "Misspecified semiparametric model selection with weakly dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 558-586, July.
    6. Brück, Florian & Fermanian, Jean-David & Min, Aleksey, 2023. "A corrected Clarke test for model selection and beyond," Journal of Econometrics, Elsevier, vol. 235(1), pages 105-132.
    7. Ye Yang & Osman Dogan & Suleyman Taspinar & Fei Jin, 2023. "A Review of Cross-Sectional Matrix Exponential Spatial Models," Papers 2311.14813, arXiv.org.
    8. Liu, Tuo & Lee, Lung-fei, 2019. "A likelihood ratio test for spatial model selection," Journal of Econometrics, Elsevier, vol. 213(2), pages 434-458.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Ragusa, 2011. "Minimum Divergence, Generalized Empirical Likelihoods, and Higher Order Expansions," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 406-456, August.
    2. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    3. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    4. Jean-Pierre Florens & Anna Simoni, 2021. "Gaussian Processes and Bayesian Moment Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 482-492, March.
    5. Xiaoxia Shi, 2015. "A nondegenerate Vuong test," Quantitative Economics, Econometric Society, vol. 6(1), pages 85-121, March.
    6. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    7. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    8. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    9. Maenhout, Pascal J. & Vedolin, Andrea & Xing, Hao, 2025. "Robustness and dynamic sentiment," Journal of Financial Economics, Elsevier, vol. 163(C).
    10. Antoine, Bertille & Dovonon, Prosper, 2021. "Robust estimation with exponentially tilted Hellinger distance," Journal of Econometrics, Elsevier, vol. 224(2), pages 330-344.
    11. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    12. Levent Kutlu & Robin C. Sickles & Mike G. Tsionas & Emmanuel Mamatzakis, 2022. "Heterogeneous decision-making and market power: an application to Eurozone banks," Empirical Economics, Springer, vol. 63(6), pages 3061-3092, December.
    13. Rong Tang & Yun Yang, 2022. "Bayesian inference for risk minimization via exponentially tilted empirical likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1257-1286, September.
    14. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    15. Marian Grendar & George Judge, 2008. "Large-Deviations Theory and Empirical Estimator Choice," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 513-525.
    16. Camponovo, Lorenzo & Otsu, Taisuke, 2014. "On Bartlett correctability of empirical likelihood in generalized power divergence family," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 38-43.
    17. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    18. Francesco Bravo, 2022. "Misspecified semiparametric model selection with weakly dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 558-586, July.
    19. Xiaohong Chen & Lars Peter Hansen & Peter G. Hansen, 2020. "Robust identification of investor beliefs," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(52), pages 33130-33140, December.
    20. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emjrnl:v:20:y:2017:i:1:p:52-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.