IDEAS home Printed from https://ideas.repec.org/p/adl/wpaper/2020-02.html
   My bibliography  Save this paper

Revisiting empirical studies on the liquidity effect: An identication-robust approach

Author

Listed:
  • Firmin Doko Tchatoka

    (School of Economics, University of Adelaide)

  • Lauren Slinger

    (School of Economics, University of Adelaide)

  • Virginie Masson

    (School of Economics, University of Adelaide)

Abstract

The liquidity effect, the short run negative response of interest rates to an increase in the money supply, has been the subject of a large number of studies, most of which based on the estimation of structural vector autoregressive models using standard instrumental variable methods (see e.g. Gali, 1992, Quarterly Journal of Economics). Using data from both the United States and Australia, we show that these SVAR models are weakly identified, and therefore the standard IV estimates of the structural coefficients and impulse response functions are biased and inconsistent. We use statistical procedures robust to weak instruments, along with the projection method of Dufour and Taamouti (2005, Econometrica), to construct confidence sets with correct coverage rate for the structural parameters and impact response functions of Gali's four variable IS-LM SVAR model. We find that these confidence sets are in general unbounded or large, and further, contain zero, thus suggesting that the evidence of the liquidity effect found in previous studies is empirically fragile. Our findings align with Pagan and Robertson (1998, Review of Economics and Statistics) who first pointed out possible identification issues in SVAR models.

Suggested Citation

  • Firmin Doko Tchatoka & Lauren Slinger & Virginie Masson, 2020. "Revisiting empirical studies on the liquidity effect: An identication-robust approach," School of Economics and Public Policy Working Papers 2020-02, University of Adelaide, School of Economics and Public Policy.
  • Handle: RePEc:adl:wpaper:2020-02
    as

    Download full text from publisher

    File URL: https://media.adelaide.edu.au/economics/papers/doc/wp2020-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lastrapes, William D. & Selgin, George, 1995. "The liquidity effect: Identifying short-run interest rate dynamics using long-run restrictions," Journal of Macroeconomics, Elsevier, vol. 17(3), pages 387-404.
    2. Bernanke, Ben S. & Mihov, Ilian, 1998. "The liquidity effect and long-run neutrality," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 49(1), pages 149-194, December.
    3. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    4. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    5. Firmin Doko Tchatoka & Jean-Marie Dufour, 2016. "Exogeneity tests, weak identification, incomplete models and non-Gaussian distributions: Invariance and finite-sample distributional theory," School of Economics and Public Policy Working Papers 2016-01, University of Adelaide, School of Economics and Public Policy.
    6. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    7. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    8. A. R. Pagan & J. C. Robertson, 1998. "Structural Models Of The Liquidity Effect," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 202-217, May.
    9. Chevillon, Guillaume & Mavroeidis, Sophocles & Zhan, Zhaoguo, 2020. "Robust Inference In Structural Vector Autoregressions With Long-Run Restrictions," Econometric Theory, Cambridge University Press, vol. 36(1), pages 86-121, February.
    10. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    11. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    12. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    13. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-1247, December.
    14. repec:bla:ecorec:v:76:y:2000:i:235:p:321-42 is not listed on IDEAS
    15. Leeper, Eric M. & Gordon, David B., 1992. "In search of the liquidity effect," Journal of Monetary Economics, Elsevier, vol. 29(3), pages 341-369, June.
    16. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    17. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    18. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    19. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    20. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    21. Frederic S. Mishkin, 1996. "The Channels of Monetary Transmission: Lessons for Monetary Policy," NBER Working Papers 5464, National Bureau of Economic Research, Inc.
    22. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    23. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    24. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    25. Poskitt, D. S. & Skeels, C. L., 2013. "Inference in the Presence of Weak Instruments: A Selected Survey," Foundations and Trends(R) in Econometrics, now publishers, vol. 6(1), pages 1-99, August.
    26. Mardi Dungey & Adrian Pagan, 2000. "A Structural VAR Model of the Australian Economy," The Economic Record, The Economic Society of Australia, vol. 76(235), pages 321-342, December.
    27. Andrea Brischetto & Graham Voss, 1999. "A Structural Vector Autoregression Model of Monetary Policy in Australia," RBA Research Discussion Papers rdp1999-11, Reserve Bank of Australia.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firmin Doko Tchatoka & Wenjie Wang, 2015. "On Bootstrap Validity for Subset Anderson-Rubin Test in IV Regressions," School of Economics and Public Policy Working Papers 2015-01, University of Adelaide, School of Economics and Public Policy.
    2. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    3. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    4. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    5. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    6. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    7. Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
    8. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    9. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    10. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    11. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    12. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    13. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    14. Kichian, Maral & Rumler, Fabio, 2014. "Forecasting Canadian inflation: A semi-structural NKPC approach," Economic Modelling, Elsevier, vol. 43(C), pages 183-191.
    15. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2010. "Estimation uncertainty in structural inflation models with real wage rigidities," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2554-2561, November.
    16. Marcellino, Massimiliano & Kapetanios, George & Khalaf, Lynda, 2015. "Factor based identification-robust inference in IV regressions," CEPR Discussion Papers 10390, C.E.P.R. Discussion Papers.
    17. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
    18. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    19. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    20. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.

    More about this item

    Keywords

    Corruption; Liquidity effect; weak instruments; AR-statistic; projection method; confidence sets; correct coverage rate;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adl:wpaper:2020-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Qazi Haque (email available below). General contact details of provider: https://edirc.repec.org/data/decadau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.