IDEAS home Printed from https://ideas.repec.org/a/wly/canjec/v55y2022i2p739-763.html
   My bibliography  Save this article

Iterated expectations under rank‐dependent expected utility and implications for common valuation methods

Author

Listed:
  • Alex Stomper
  • Marie‐Louise Vierø

Abstract

This paper investigates the applicability of common valuation techniques in finance when the decision‐maker's preferences can be described by the rank‐dependent expected utility model. Under expected utility theory, compound lotteries can be valued by “iterating” expectations: the expected utility of a compound lottery is the expected value of a simple lottery over prizes that are certainty equivalents to follow‐up lotteries. We derive necessary and sufficient conditions for a similar valuation technique in the framework of rank‐dependent expected utility when a consequentialist decision‐maker has to choose between prospects that belong to a comonotonic class. The conditions coincide with those for dynamically consistent behaviour of such a decision‐maker. The decision‐maker must update her preferences based on a benchmark prospect that can be interpreted as a formalization of “black‐and‐white thinking.” Attentes itératives dans un modèle d'utilité espérée à dépendances de rangs et conséquences pour les méthodes d'évaluation courantes. Cet article analyse l'applicabilité des techniques d'évaluation courantes dans le domaine des finances lorsque les préférences du décideur peuvent être décrites en fonction du modèle d'utilité espérée à dépendances de rangs. Conformément à la théorie d'utilité espérée, les loteries composées peuvent être évaluées selon des attentes « itératives » : l'utilité espérée d'une loterie composée correspond à la valeur espérée d'une loterie simple pour des lots à équivalents garantis lors des loteries à suivre. Nous extrapolons les conditions nécessaires et suffisantes pour une technique d'évaluation semblable dans le cadre du modèle d'utilité espérée à dépendances de rangs lorsqu'un décideur conséquentialiste doit faire un choix entre propositions qui appartiennent à une classe comonotonique. Les conditions coïncident avec celles qui existent pour un comportement dynamique cohérent d'un tel décideur. Le décideur doit mettre ses préférences à jour en fonction d'une proposition de référence pouvant être interprétée comme la formalisation du « raisonnement en noir et blanc ».

Suggested Citation

  • Alex Stomper & Marie‐Louise Vierø, 2022. "Iterated expectations under rank‐dependent expected utility and implications for common valuation methods," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(2), pages 739-763, May.
  • Handle: RePEc:wly:canjec:v:55:y:2022:i:2:p:739-763
    DOI: 10.1111/caje.12593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/caje.12593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/caje.12593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilboa Itzhak & Schmeidler David, 1993. "Updating Ambiguous Beliefs," Journal of Economic Theory, Elsevier, vol. 59(1), pages 33-49, February.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. André Lapied & Pascal Toquebeuf, 2010. "Atemporal non-expected utility preferences, dynamic consistency and consequentialism," Economics Bulletin, AccessEcon, vol. 30(2), pages 1661-1669.
    4. Kliger, Doron & Levy, Ori, 2009. "Theories of choice under risk: Insights from financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 330-346, August.
    5. Epstein Larry G. & Le Breton Michel, 1993. "Dynamically Consistent Beliefs Must Be Bayesian," Journal of Economic Theory, Elsevier, vol. 61(1), pages 1-22, October.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Sarin, Rakesh & Wakker, Peter P, 1998. "Revealed Likelihood and Knightian Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 16(3), pages 223-250, July-Aug..
    8. Dominiak, Adam, 2013. "Iterated Choquet expectations: A possibility result," Economics Letters, Elsevier, vol. 120(2), pages 155-159.
    9. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    10. Siniscalchi, Marciano, 2009. "Two Out Of Three Ain'T Bad: A Comment On “The Ambiguity Aversion Literature: A Critical Assessment”," Economics and Philosophy, Cambridge University Press, vol. 25(3), pages 335-356, November.
    11. Machina, Mark J, 1989. "Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty," Journal of Economic Literature, American Economic Association, vol. 27(4), pages 1622-1668, December.
    12. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    13. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    14. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    15. Alexander Zimper, 2011. "Re-examining the law of iterated expectations for Choquet decision makers," Theory and Decision, Springer, vol. 71(4), pages 669-677, October.
    16. Sebastian Ebert & Philipp Strack, 2015. "Until the Bitter End: On Prospect Theory in a Dynamic Context," American Economic Review, American Economic Association, vol. 105(4), pages 1618-1633, April.
    17. Wakker, Peter & Tversky, Amos, 1993. "An Axiomatization of Cumulative Prospect Theory," Journal of Risk and Uncertainty, Springer, vol. 7(2), pages 147-175, October.
    18. Konstantinos Georgalos, 2019. "An experimental test of the predictive power of dynamic ambiguity models," Journal of Risk and Uncertainty, Springer, vol. 59(1), pages 51-83, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    2. Zimper, Alexander, 2009. "Half empty, half full and why we can agree to disagree forever," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 283-299, August.
    3. André Lapied & Robert Kast, 2005. "Updating Choquet valuation and discounting information arrivals," Working Papers 05-09, LAMETA, Universtiy of Montpellier, revised Jan 2005.
    4. Zimper, Alexander, 2012. "Asset pricing in a Lucas fruit-tree economy with the best and worst in mind," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 610-628.
    5. Alexander Zimper, 2011. "Do Bayesians Learn Their Way Out of Ambiguity?," Decision Analysis, INFORMS, vol. 8(4), pages 269-285, December.
    6. Rawley Heimer & Zwetelina Iliewa & Alex Imax & Martin Weber, 2021. "Dynamic Inconsistency in Risky Choice: Evidence from the Lab and Field," ECONtribute Discussion Papers Series 094, University of Bonn and University of Cologne, Germany.
    7. André Lapied & Pascal Toquebeuf, 2011. "Dynamically consistent CEU preferences," Working Papers halshs-00856193, HAL.
    8. Lapied, André & Toquebeuf, Pascal, 2012. "Dynamically consistent CEU preferences on f-convex events," Mathematical Social Sciences, Elsevier, vol. 63(3), pages 252-256.
    9. Border, Kim C. & Segal, Uzi, 1997. "Coherent Odds and Subjective Probability," University of Western Ontario, Departmental Research Report Series 9717, University of Western Ontario, Department of Economics.
    10. Nobuo Koida, 2012. "Nest-monotonic two-stage acts and exponential probability capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 99-124, May.
    11. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    12. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2016. "A life-cycle model with ambiguous survival beliefs," Journal of Economic Theory, Elsevier, vol. 162(C), pages 137-180.
    13. Markus Dertwinkel-Kalt & Jonas Frey, 2020. "Optimal Stopping in a Dynamic Salience Model," CESifo Working Paper Series 8496, CESifo.
    14. Alexander Ludwig & Alexander Zimper, 2013. "A decision-theoretic model of asset-price underreaction and overreaction to dividend news," Annals of Finance, Springer, vol. 9(4), pages 625-665, November.
    15. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    16. Georgalos, Konstantinos, 2021. "Dynamic decision making under ambiguity: An experimental investigation," Games and Economic Behavior, Elsevier, vol. 127(C), pages 28-46.
    17. Groneck, Max & Ludwig, Alexander & Zimper, Alexander, 2024. "Who saves more, the naive or the sophisticated agent?," Journal of Economic Theory, Elsevier, vol. 219(C).
    18. Ludwig, Alexander & Zimper, Alexander, 2006. "Investment behavior under ambiguity: The case of pessimistic decision makers," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 111-130, September.
    19. Alexander Zimper, 2008. "Asset pricing in a Lucas ‘fruit-tree’ economy with non-additive beliefs," Working Papers 092, Economic Research Southern Africa.
    20. Henderson, Vicky & Hobson, David & Tse, Alex S.L., 2017. "Randomized strategies and prospect theory in a dynamic context," Journal of Economic Theory, Elsevier, vol. 168(C), pages 287-300.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:canjec:v:55:y:2022:i:2:p:739-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5982 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.