IDEAS home Printed from https://ideas.repec.org/a/wly/canjec/v44y2011i4p1297-1330.html
   My bibliography  Save this article

Predicting Canadian recessions using dynamic probit modelling approaches

Author

Listed:
  • Lili Hao
  • Eric C.Y. Ng

Abstract

This paper examines the ability of various financial and macroeconomic variables to forecast Canadian recessions. It evaluates four model specifications, including the advanced dynamic, autoregressive, dynamic autoregressive probit models as well as the conventional static probit model. The empirical results highlight several significant recession predictors, notably the government bond yield spread, growth rates of the housing starts, the real money supply and the composite index of leading indicators. Both the in‐sample and out‐of‐sample results suggest that the forecasting performance of the four probit models is mixed. The dynamic and dynamic autoregressive probit models are better in predicting the duration of recessions while the static and autoregressive probit models are better in forecasting the peaks of business cycles. Hence, the advanced dynamic models and the conventional static probit model can complement one another to provide more accurate forecasts for the duration and turning points of business cycles. Ce texte examine la capacité de différentes variables financières et macroéconomiques à prédire les récessions canadiennes On examine quatre spécifications du modèle probit –, le modèle dynamique avancé, le modèle autorégressif, le modèle dynamique autorégressif, ainsi que le modèle statique conventionnel. Les résultats empiriques soulignent plusieurs prédicteurs significatifs – notamment l’étalement des taux de rendement des obligations gouvernementales, les taux de croissance des mises en chantier des maisons, l’offre de monnaie réelle, et l’indice composite avancé. Les résultats à la fois pour des estimations basées sur l’échantillon ou hors‐échantillon suggèrent que la performance prévisionnelle des quatre modèles probit n’est pas toujours cohérente. Les modèles dynamique et dynamique autorégressif performent mieux dans la prévision de la durée des récessions, alors que les modèles statique et autorégressif font un meilleur travail dans la prévision des sommets des cycles d’affaires. Les modèles dynamique avancé et conventionnel se complètent en ce qu’ils fournissent des données plus précises sur la durée et et les points tournants des cycles d’affaires.

Suggested Citation

  • Lili Hao & Eric C.Y. Ng, 2011. "Predicting Canadian recessions using dynamic probit modelling approaches," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 44(4), pages 1297-1330, November.
  • Handle: RePEc:wly:canjec:v:44:y:2011:i:4:p:1297-1330
    DOI: 10.1111/j.1540-5982.2011.01675.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1540-5982.2011.01675.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1540-5982.2011.01675.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
    2. Bernard, Henri & Gerlach, Stefan, 1998. "Does the Term Structure Predict Recessions? The International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 195-215, July.
    3. Joseph Atta-Mensah & Greg Tkacz, 1998. "Predicting Canadian Recessions Using Financial Variables: A Probit Approach," Staff Working Papers 98-5, Bank of Canada.
    4. Marcelle Chauvet & Simon Potter, 2005. "Forecasting recessions using the yield curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(2), pages 77-103.
    5. Mishkin, Frederic S., 1990. "What does the term structure tell us about future inflation?," Journal of Monetary Economics, Elsevier, vol. 25(1), pages 77-95, January.
    6. Frederic S. Mishkin, 1990. "The Information in the Longer Maturity Term Structure about Future Inflation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(3), pages 815-828.
    7. Arturo Estrella & Frederic S. Mishkin, 1995. "The term structure of interest rates and its role in monetary policy for the European Central Bank," Research Paper 9526, Federal Reserve Bank of New York.
    8. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    9. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    10. Yanjun Liu & Carl Gaudreault & Robert Lamy, "undated". "New Concident, Leading and Recession Indexes for the Canadian Economy: An Application of the Stock and Watson Methodology," Working Papers-Department of Finance Canada 2003-12, Department of Finance Canada.
    11. Estrella, Arturo, 1998. "A New Measure of Fit for Equations with Dichotomous Dependent Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 198-205, April.
    12. Arturo Estrella, 2005. "Why Does the Yield Curve Predict Output and Inflation?," Economic Journal, Royal Economic Society, vol. 115(505), pages 722-744, July.
    13. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    14. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
    15. Marianna Brunetti & Costanza Torricelli, 2009. "Economic activity and recession probabilities: information content and predictive power of the term spread in Italy," Applied Economics, Taylor & Francis Journals, vol. 41(18), pages 2309-2322.
    16. Mishkin, Frederic S., 1991. "A multi-country study of the information in the shorter maturity term structure about future inflation," Journal of International Money and Finance, Elsevier, vol. 10(1), pages 2-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachidi Kotchoni & Dalibor Stevanovic, 2020. "GDP Forecast Accuracy During Recessions," Working Papers 20-06, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Jean-Marie Dufour & Joachim Wilde, 2018. "Weak identification in probit models with endogenous covariates," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 611-631, October.
    3. Dalibor Stevanovic & Rachidi Kotchoni, 2016. "Forecasting U.S. Recessions and Economic Activity," CIRANO Working Papers 2016s-36, CIRANO.
    4. Boukhatem, Jamel & Sekouhi, Hayfa, 2017. "What does the bond yield curve tell us about Tunisian economic activity?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 295-303.
    5. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    6. Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner Piazza Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Artur Brasil Fialho Rodrigues, 2023. "Predicting Recessions in (almost) Real Time in a Big-data Setting," Working Papers Series 587, Central Bank of Brazil, Research Department.
    7. Mustapha Olalekan Ojo & Luís Aguiar-Conraria & Maria Joana Soares, 2020. "A time–frequency analysis of the Canadian macroeconomy and the yield curve," Empirical Economics, Springer, vol. 58(5), pages 2333-2351, May.
    8. MeiChi Huang, 2019. "A Nationwide or Localized Housing Crisis? Evidence from Structural Instability in US Housing Price and Volume Cycles," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1547-1563, April.
    9. Kajal Lahiri & Liu Yang, 2023. "Predicting binary outcomes based on the pair-copula construction," Empirical Economics, Springer, vol. 64(6), pages 3089-3119, June.
    10. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
    2. Rebecca Stuart, 2020. "Monetary regimes, the term structure and business cycles in Ireland, 1972–2018," Manchester School, University of Manchester, vol. 88(5), pages 731-748, September.
    3. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    4. Pons Novell, J., 2002. "Ciclo de la economía española y contenido informativo de los tipos de interés," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 20, pages 583-598, Diciembre.
    5. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    6. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    7. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    8. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    9. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    10. Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
    11. Gerlach, Stefan, 2003. "Interpreting the term structure of interbank rates in Hong Kong," Pacific-Basin Finance Journal, Elsevier, vol. 11(5), pages 593-609, November.
    12. Hamilton, James D & Kim, Dong Heon, 2002. "A Reexamination of the Predictability of Economic Activity Using the Yield Spread," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 340-360, May.
    13. Christiansen, Charlotte, 2013. "Predicting severe simultaneous recessions using yield spreads as leading indicators," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1032-1043.
    14. Shuping Shi & Peter C. B. Phillips & Stan Hurn, 2018. "Change Detection and the Causal Impact of the Yield Curve," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 966-987, November.
    15. Matthew C. Li, 2014. "The US zero-coupon yield spread as a predictor of excess daily stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 24(13), pages 889-906, July.
    16. Hibiki Ichiue, 2004. "Why Can the Yield Curve Predict Output Growth, Inflation, and Interest Rates? An Analysis with an Affine Term Structure Model," Bank of Japan Working Paper Series 04-E-11, Bank of Japan.
    17. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    18. Aguiar-Conraria, Luís & Martins, Manuel M.F. & Soares, Maria Joana, 2012. "The yield curve and the macro-economy across time and frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1950-1970.
    19. Leo Krippner, 2005. "Investigating the Relationships between the Yield Curve, Output and Inflation using an Arbitrage-Free Version of the Nelson and Siegel Class of Yield Curve Models," Working Papers in Economics 05/02, University of Waikato.
    20. Arnaud Mehl, 2009. "The Yield Curve as a Predictor and Emerging Economies," Open Economies Review, Springer, vol. 20(5), pages 683-716, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:canjec:v:44:y:2011:i:4:p:1297-1330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5982 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.