IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v37y2021i1p53-73.html
   My bibliography  Save this article

Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data

Author

Listed:
  • Luis Sánchez
  • Víctor Leiva
  • Manuel Galea
  • Helton Saulo

Abstract

The Birnbaum‐Saunders (BS) distribution is a model that frequently appears in the statistical literature and has proved to be very versatile and efficient across a wide range of applications. However, despite the growing interest in the study of the BS distribution, quantile regression modeling has not been considered for this distribution. To fill this gap, we introduce a class of quantile regression models based on the BS distribution, which allows us to describe positive and asymmetric data when a quantile must be predicted using covariates. We use an approach based on a quantile parameterization to generate the model, permitting us to consider a similar framework to generalized linear models, providing wide flexibility. The methodology proposed includes a thorough study of theoretical properties and practical issues, such as maximum likelihood parameter estimation and diagnostic analytics based on local influence and residuals. The performance of the residuals is evaluated by simulations, whereas an illustrative example of income data is conducted using the methodology to show its potential for applications. The numerical results report an adequate performance of the approach to quantile regression, indicating that the BS distribution is a good modeling choice when dealing with data that have both positive support and asymmetry. The economic implications of our investigation are discussed in the final section. Hence, it can be a valuable addition to the tool kit of applied statisticians and econometricians.

Suggested Citation

  • Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2021. "Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 53-73, January.
  • Handle: RePEc:wly:apsmbi:v:37:y:2021:i:1:p:53-73
    DOI: 10.1002/asmb.2556
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.2556
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.2556?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francisco J. A. Cysneiros & Víctor Leiva & Shuangzhe Liu & Carolina Marchant & Paulo Scalco, 2019. "A Cobb–Douglas type model with stochastic restrictions: formulation, local influence diagnostics and data analytics in economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1693-1719, July.
    2. Carolina Marchant & Víctor Leiva & George Christakos & M. Fernanda Cavieres, 2019. "Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    2. Helton Saulo & Alan Dasilva & Víctor Leiva & Luis Sánchez & Hanns de la Fuente‐Mella, 2022. "Log‐symmetric quantile regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 124-163, May.
    3. Helton Saulo & Narayanaswamy Balakrishnan & Roberto Vila, 2021. "On a quantile autoregressive conditional duration model applied to high-frequency financial data," Papers 2109.03844, arXiv.org.
    4. Marcelo Bourguignon & Diego I. Gallardo & Helton Saulo, 2024. "Parametric Quantile Beta Regression Model," International Statistical Review, International Statistical Institute, vol. 92(1), pages 106-129, April.
    5. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    6. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    7. Luis Sánchez & Víctor Leiva & Helton Saulo & Carolina Marchant & José M. Sarabia, 2021. "A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications," Mathematics, MDPI, vol. 9(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    2. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Shamsuzzaman, Mohammad & Shamsuzzoha, Ahm & Maged, Ahmed & Haridy, Salah & Bashir, Hamdi & Karim, Azharul, 2021. "Effective monitoring of carbon emissions from industrial sector using statistical process control," Applied Energy, Elsevier, vol. 300(C).
    4. Helton Saulo & Roberto Vila & Giovanna V. Borges & Marcelo Bourguignon & Víctor Leiva & Carolina Marchant, 2023. "Modeling Income Data via New Parametric Quantile Regressions: Formulation, Computational Statistics, and Application," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    5. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    6. Hao Wu & Xinwei Gao, 2021. "Multimodal Data Based Regression to Monitor Air Pollutant Emission in Factories," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    7. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    8. Martina Novotná & Ivana Faltová Leitmanová & Jiří Alina & Tomáš Volek, 2020. "Capital Intensity and Labour Productivity in Waste Companies," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    9. Gonzálo Carreño & Xaviera A. López-Cortés & Carolina Marchant, 2022. "Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile," Mathematics, MDPI, vol. 10(3), pages 1-17, January.
    10. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    11. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    12. Yonghui Liu & Guohua Mao & Víctor Leiva & Shuangzhe Liu & Alejandra Tapia, 2020. "Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    13. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:37:y:2021:i:1:p:53-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.