IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1587-d413734.html
   My bibliography  Save this article

Data-Influence Analytics in Predictive Models Applied to Asthma Disease

Author

Listed:
  • Alejandra Tapia

    (Faculty of Basic Sciences, Universidad Católica del Maule, Talca 3466706, Chile)

  • Viviana Giampaoli

    (Institute of Mathematics and Statistics, Universidade de São Paulo, São Paulo 01000-000, Brazil)

  • Víctor Leiva

    (School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

Abstract

Asthma is one of the most common chronic diseases around the world and represents a serious problem in human health. Predictive models have become important in medical sciences because they provide valuable information for data-driven decision-making. In this work, a methodology of data-influence analytics based on mixed-effects logistic regression models is proposed for detecting potentially influential observations which can affect the quality of these models. Global and local influence diagnostic techniques are used simultaneously in this detection, which are often used separately. In addition, predictive performance measures are considered for this analytics. A study with children and adolescent asthma real data, collected from a public hospital of São Paulo, Brazil, is conducted to illustrate the proposed methodology. The results show that the influence diagnostic methodology is helpful for obtaining an accurate predictive model that provides scientific evidence when data-driven medical decision-making.

Suggested Citation

  • Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1587-:d:413734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    3. Xu, Liang & Lee, Sik-Yum & Poon, Wai-Yin, 2006. "Deletion measures for generalized linear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1131-1146, November.
    4. Zhiying Pan & D. Y. Lin, 2005. "Goodness-of-Fit Methods for Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 61(4), pages 1000-1009, December.
    5. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    6. Liming Xiang & Andy Lee & Siu-Keung Tse, 2003. "Assessing local cluster influence in generalized linear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(4), pages 349-359.
    7. Helton Saulo & Jeremias Leão & Víctor Leiva & Robert G. Aykroyd, 2019. "Birnbaum–Saunders autoregressive conditional duration models applied to high-frequency financial data," Statistical Papers, Springer, vol. 60(5), pages 1605-1629, October.
    8. Alejandra Tapia & Viviana Giampaoli & Maria del Pilar Diaz & Victor Leiva, 2019. "Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(6), pages 1021-1042, April.
    9. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    10. Tamura, Karin Ayumi & Giampaoli, Viviana, 2013. "New prediction method for the mixed logistic model applied in a marketing problem," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 202-216.
    11. Ramón Giraldo & Luis Herrera & Víctor Leiva, 2020. "Cokriging Prediction Using as Secondary Variable a Functional Random Field with Application in Environmental Pollution," Mathematics, MDPI, vol. 8(8), pages 1-13, August.
    12. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    13. Carolina Marchant & Víctor Leiva & George Christakos & M. Fernanda Cavieres, 2019. "Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    3. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    4. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    5. Cantoni, Eva & Jacot, Nadège & Ghisletta, Paolo, 2024. "Review and comparison of measures of explained variation and model selection in linear mixed-effects models," Econometrics and Statistics, Elsevier, vol. 29(C), pages 150-168.
    6. Matos, Larissa A. & Bandyopadhyay, Dipankar & Castro, Luis M. & Lachos, Victor H., 2015. "Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 104-117.
    7. Yonghui Liu & Guohua Mao & Víctor Leiva & Shuangzhe Liu & Alejandra Tapia, 2020. "Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    8. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.
    9. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    10. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    11. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    12. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    14. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    15. Saulo, Helton & Balakrishnan, Narayanaswamy & Vila, Roberto, 2023. "On a quantile autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 425-448.
    16. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    18. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    19. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    20. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1587-:d:413734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.