IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p693-d353191.html
   My bibliography  Save this article

Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution

Author

Listed:
  • Yonghui Liu

    (School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China)

  • Guohua Mao

    (School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Víctor Leiva

    (School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Shuangzhe Liu

    (Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia)

  • Alejandra Tapia

    (School of Engineering in Statistics, Universidad Católica del Maule, Talca 3466706, Chile)

Abstract

Autoregressive models have played an important role in time series. In this paper, an autoregressive model based on the skew-normal distribution is considered. The estimation of its parameters is carried out by using the expectation–maximization algorithm, whereas the diagnostic analytics are conducted by means of the local influence method. Normal curvatures for the model under four perturbation schemes are established. Simulation studies are conducted to evaluate the performance of the proposed procedure. In addition, an empirical example involving weekly financial return data are analyzed using the procedure with the proposed diagnostic analytics, which has improved the model fit.

Suggested Citation

  • Yonghui Liu & Guohua Mao & Víctor Leiva & Shuangzhe Liu & Alejandra Tapia, 2020. "Diagnostic Analytics for an Autoregressive Model under the Skew-Normal Distribution," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:693-:d:353191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Francisco J. A. Cysneiros & Víctor Leiva & Shuangzhe Liu & Carolina Marchant & Paulo Scalco, 2019. "A Cobb–Douglas type model with stochastic restrictions: formulation, local influence diagnostics and data analytics in economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1693-1719, July.
    3. Alejandra Tapia & Viviana Giampaoli & Maria del Pilar Diaz & Victor Leiva, 2019. "Sensitivity analysis of longitudinal count responses: a local influence approach and application to medical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(6), pages 1021-1042, April.
    4. S. Liu & T. Ma & A. SenGupta & K. Shimizu & M.-Z. Wang, 2017. "Influence Diagnostics in Possibly Asymmetric Circular-Linear Multivariate Regression Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-93, May.
    5. Carmichael, Benoıˆt & Coën, Alain, 2013. "Asset pricing with skewed-normal return," Finance Research Letters, Elsevier, vol. 10(2), pages 50-57.
    6. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    7. Xie, Feng-Chang & Lin, Jin-Guan & Wei, Bo-Cheng, 2009. "Diagnostics for skew-normal nonlinear regression models with AR(1) errors," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4403-4416, October.
    8. Víctor Leiva & Shuangzhe Liu & Lei Shi & Francisco José A. Cysneiros, 2016. "Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 627-642, March.
    9. Shi, Lei & Huang, Mei, 2011. "Stepwise local influence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 973-982, February.
    10. Marcelo Ventura & Helton Saulo & Victor Leiva & Sandro Monsueto, 2019. "Log‐symmetric regression models: information criteria and application to movie business and industry data with economic implications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(4), pages 963-977, July.
    11. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Ju & Yan Yang & Mingxing Hu & Lin Dai & Liucang Wu, 2022. "Bayesian Influence Analysis of the Skew-Normal Spatial Autoregression Models," Mathematics, MDPI, vol. 10(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    3. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    4. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    5. Jun Lu & Wen Gan & Lei Shi, 2022. "Local influence analysis for GMM estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 1-23, March.
    6. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    7. Fukang Zhu & Shuangzhe Liu & Lei Shi, 2016. "Local influence analysis for Poisson autoregression with an application to stock transaction data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(1), pages 4-25, February.
    8. Rendao Ye & Bingni Fang & Weixiao Du & Kun Luo & Yiting Lu, 2022. "Bootstrap Tests for the Location Parameter under the Skew-Normal Population with Unknown Scale Parameter and Skewness Parameter," Mathematics, MDPI, vol. 10(6), pages 1-23, March.
    9. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    10. Francisco J. A. Cysneiros & Víctor Leiva & Shuangzhe Liu & Carolina Marchant & Paulo Scalco, 2019. "A Cobb–Douglas type model with stochastic restrictions: formulation, local influence diagnostics and data analytics in economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1693-1719, July.
    11. Yonghui Liu & Ruochen Sang & Shuangzhe Liu, 2017. "Diagnostic analysis for a vector autoregressive model under Student-super-′s t-distributions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 86-114, May.
    12. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    13. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    14. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    15. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    16. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    17. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    18. Wai-Yin Poon & Man-Lai Tang & Shu-Jia Wang, 2003. "Influence Measures in Contingency Tables With Application in Sampling Zeros," Sociological Methods & Research, , vol. 31(4), pages 439-452, May.
    19. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    20. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:693-:d:353191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.