IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p373-d734077.html
   My bibliography  Save this article

Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile

Author

Listed:
  • Gonzálo Carreño

    (Faculty of Engineering Sciences, Universidad Católica del Maule, Talca 3480112, Chile)

  • Xaviera A. López-Cortés

    (Faculty of Engineering Sciences, Universidad Católica del Maule, Talca 3480112, Chile
    Department of Computer Science and Industries, Universidad Católica del Maule, Talca 3480112, Chile)

  • Carolina Marchant

    (Faculty of Basic Sciences, Universidad Católica del Maule, Talca 3480112, Chile
    ANID-Millennium Science Initiative Program-Millennium Nucleus Center for the Discovery of Structures in Complex Data, Santiago 7820244, Chile)

Abstract

One of the main environmental problems that affects people’s health and quality of life is air pollution by particulate matter. Chile has nine of the ten most polluted cities in South America according to a report presented in 2019 by Greenpeace and AirVisual that measured the air quality index based on the levels of fine particles. Most Chilean cities are highly contaminated by particulate matter, especially during the months of April to August (the critical episode management period). The objective of this study is to predict particulate matter levels based on meteorological and climatic features, such as temperature, wind speed, wind direction, precipitation and relative air humidity in Talca, Chile, during the critical episode management periods between 2014 and 2018. Predictive models based on machine learning techniques were used, considering training datasets with meteorological and climatic data, and particulate matter levels from the three air quality monitoring stations in Talca, Chile. We carried out the training of 24 models to predict particulate matter levels considering the 24-h average and average between 05:00 to 11:00 p.m. For the model testing, data from the year 2018 during the critical episode management period were used. The obtained results indicate that our models are able to effectively predict levels of particulate matter, enabling correct management of critical episodes, especially for alert, pre-emergency and emergency conditions. We used the cross-platform and open-source programming language Python for the development and implementation of the proposed models and R-project for some visualizations.

Suggested Citation

  • Gonzálo Carreño & Xaviera A. López-Cortés & Carolina Marchant, 2022. "Machine Learning Models to Predict Critical Episodes of Environmental Pollution for PM2.5 and PM10 in Talca, Chile," Mathematics, MDPI, vol. 10(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:373-:d:734077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carolina Marchant & Víctor Leiva & George Christakos & M. Fernanda Cavieres, 2019. "Monitoring urban environmental pollution by bivariate control charts: New methodology and case study in Santiago, Chile," Environmetrics, John Wiley & Sons, Ltd., vol. 30(5), August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole Jeldes & Germán Ibacache-Pulgar & Carolina Marchant & Javier Linkolk López-Gonzales, 2022. "Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails," Mathematics, MDPI, vol. 10(19), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shamsuzzaman, Mohammad & Shamsuzzoha, Ahm & Maged, Ahmed & Haridy, Salah & Bashir, Hamdi & Karim, Azharul, 2021. "Effective monitoring of carbon emissions from industrial sector using statistical process control," Applied Energy, Elsevier, vol. 300(C).
    2. Alejandra Tapia & Viviana Giampaoli & Víctor Leiva & Yuhlong Lio, 2020. "Data-Influence Analytics in Predictive Models Applied to Asthma Disease," Mathematics, MDPI, vol. 8(9), pages 1-19, September.
    3. Hao Wu & Xinwei Gao, 2021. "Multimodal Data Based Regression to Monitor Air Pollutant Emission in Factories," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    4. Łukasz Warguła & Mateusz Kukla & Piotr Krawiec & Bartosz Wieczorek, 2020. "Reduction in Operating Costs and Environmental Impact Consisting in the Modernization of the Low-Power Cylindrical Wood Chipper Power Unit by Using Alternative Fuel," Energies, MDPI, vol. 13(11), pages 1-16, June.
    5. Luis Sánchez & Víctor Leiva & Manuel Galea & Helton Saulo, 2021. "Birnbaum‐Saunders quantile regression and its diagnostics with application to economic data," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 53-73, January.
    6. Aykroyd, Robert G. & Leiva, Víctor & Ruggeri, Fabrizio, 2019. "Recent developments of control charts, identification of big data sources and future trends of current research," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 221-232.
    7. Łukasz Warguła & Mateusz Kukla & Piotr Lijewski & Michał Dobrzyński & Filip Markiewicz, 2020. "Influence of the Use of Liquefied Petroleum Gas (LPG) Systems in Woodchippers Powered by Small Engines on Exhaust Emissions and Operating Costs," Energies, MDPI, vol. 13(21), pages 1-17, November.
    8. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    9. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:373-:d:734077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.