Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh
Author
Abstract
Suggested Citation
DOI: 10.21307/stattrans-2020-024
Download full text from publisher
References listed on IDEAS
- Sharon L. Lohr & J. N. K. Rao, 2009. "Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models," Biometrika, Biometrika Trust, vol. 96(2), pages 457-468.
- P. Lahiri & Michael D. Larsen, 2005. "Regression Analysis With Linked Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 222-230, March.
- Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
- Ying Han & Partha Lahiri, 2019. "Statistical Analysis with Linked Data," International Statistical Review, International Statistical Institute, vol. 87(S1), pages 139-157, May.
- Kim, Gunky & Chambers, Raymond, 2012. "Regression analysis under incomplete linkage," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2756-2770.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ying Han, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 30-34, August.
- Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.
- Ben Powell & Paul A. Smith, 2020. "Computing expectations and marginal likelihoods for permutations," Computational Statistics, Springer, vol. 35(2), pages 871-891, June.
- Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018.
"Identification, data combination, and the risk of disclosure,"
Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
- Tatiana V. Komarova & Denis Nekipelov & Evgeny Yakovlev, 2011. "Identification, data combination and the risk of disclosure," CeMMAP working papers CWP38/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Komarova, Tatiana & Nekipelov, Denis & Yakovlev, Evgeny, 2018. "Identification, data combination and the risk of disclosure," LSE Research Online Documents on Economics 79384, London School of Economics and Political Science, LSE Library.
- Vo, Thanh Huan & Chauvet, Guillaume & Happe, André & Oger, Emmanuel & Paquelet, Stéphane & Garès, Valérie, 2023. "Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- N. Salvati & E. Fabrizi & M. G. Ranalli & R. L. Chambers, 2021. "Small area estimation with linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 78-107, February.
- Bera Sabyasachi & Chatterjee Snigdhansu, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 123-143, August.
- Shonosuke Sugasawa & Tatsuya Kubokawa & Kota Ogasawara, 2017. "Empirical Uncertain Bayes Methods in Area-level Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 684-706, September.
- Sabyasachi Bera & Snigdhansu Chatterjee, 2020. "High dimensional, robust, unsupervised record linkage," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 123-143, August.
- Ray Chambers & Andrea Diniz da Silva, 2020. "Improved secondary analysis of linked data: a framework and an illustration," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 37-59, January.
- Li‐Chun Zhang & Tiziana Tuoto, 2021. "Linkage‐data linear regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 522-547, April.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Al-Kandari Noriah M. & Lahiri Partha, 2016. "Prediction of a Function of Misclassified Binary Data," Statistics in Transition New Series, Statistics Poland, vol. 17(3), pages 429-447, September.
- J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
- Jan Pablo Burgard & Ralf Münnich, 2015. "Sae Teaching Using Simulations," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 603-610, December.
- Sedeño-Noda, A. & González-Dávila, E. & González-Martín, C. & González-Yanes, A., 2009. "Preemptive benchmarking problem: An approach for official statistics in small areas," European Journal of Operational Research, Elsevier, vol. 196(1), pages 360-369, July.
- Johannes Gräb & Michael Grimm, 2008.
"Spatial inequalities explained - Evidence from Burkina Faso,"
Ibero America Institute for Econ. Research (IAI) Discussion Papers
173, Ibero-America Institute for Economic Research.
- Gräb, J. & Grimm, M., 2009. "Spatial inequalities explained: evidence from Burkina Faso," ISS Working Papers - General Series 18725, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
- Johannes Gräb & Michael Grimm, 2008. "Spatial Inequalities Explained: Evidence from Burkina Faso," Discussion Papers of DIW Berlin 843, DIW Berlin, German Institute for Economic Research.
- N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
- Molina, Isabel, 2006. "Uncertainty under a multivariate nested-error regression model with logarithmic transformation," DES - Working Papers. Statistics and Econometrics. WS ws066117, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Miguel Boubeta & María José Lombardía & Domingo Morales, 2016. "Empirical best prediction under area-level Poisson mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 548-569, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:21:y:2020:i:4:p:30-34:n:16. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.