Covariate Selection for Small Area Estimation in Repeated Sample Surveys
Author
Abstract
Suggested Citation
DOI: 10.21307/stattrans-2015-031
Download full text from publisher
References listed on IDEAS
- Harm Jan Boonstra & Jan A. Van Den Brakel & Bart Buelens & Sabine Krieg & Marc Smeets, 2008. "Towards small area estimation at Statistics Netherlands," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 21-49.
- Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258.
- Pfeffermann, Danny & Tiller, Richard, 2006. "Small-Area Estimation With StateSpace Models Subject to Benchmark Constraints," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1387-1397, December.
- Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jan A. van den Brakel & Bart Buelens, 2015. "Covariate Selection For Small Area Estimation In Repeated Sample Surveys," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 523-540, December.
- Bart Buelens & Jan A. van den Brakel, 2015. "Covariate selection for small area estimation in repeated sample surveys," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 523-540, December.
- Bijlsma Ineke & van den Brakel Jan & van der Velden Rolf & Allen Jim, 2020.
"Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data,"
Journal of Official Statistics, Sciendo, vol. 36(2), pages 251-274, June.
- Bijlsma Ineke & van den Brakel Jan & van der Velden Rolf & Allen Jim, 2020. "Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data," Journal of Official Statistics, Sciendo, vol. 36(2), pages 251-274, June.
- Bijlsma, Ineke & van den Brakel, Jan & van der Velden, Rolf & Allen, James, 2017. "Estimating literacy levels at a detailed regional level: An application using Dutch data," ROA Research Memorandum 006, Maastricht University, Research Centre for Education and the Labour Market (ROA).
- Bijlsma, Ineke & van den Brakel, Jan & van der Velden, Rolf & Allen, James, 2017. "Estimating literacy levels at a detailed regional level: An application using Dutch data," Research Memorandum 018, Maastricht University, Graduate School of Business and Economics (GSBE).
- Yan Li & Partha Lahiri, 2019. "A Simple Adaptation of Variable Selection Software for Regression Models to Select Variables in Nested Error Regression Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 302-317, December.
- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- Wei, Yuting & Wang, Qihua & Duan, Xiaogang & Qin, Jing, 2021. "Bias-corrected Kullback–Leibler distance criterion based model selection with covariables missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
- Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
- Julia Braun & Leonhard Held & Bruno Ledergerber, 2012. "Predictive Cross-validation for the Choice of Linear Mixed-Effects Models with Application to Data from the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 68(1), pages 53-61, March.
- Jie Huang & Haiming Zhou & Nader Ebrahimi, 2022. "Bayesian Bivariate Cure Rate Models Using Copula Functions," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(3), pages 1-9, May.
- Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
- Kitagawa, Toru & Muris, Chris, 2016.
"Model averaging in semiparametric estimation of treatment effects,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 46/15, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023.
"Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
- Jeffrey S. Racine & Qi Li & Li Zheng, 2018. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Department of Economics Working Papers 2018-10, McMaster University.
- Myung-Jae Hwang & Jong-Hun Kim & Hae-Kwan Cheong, 2020. "Short-Term Impacts of Ambient Air Pollution on Health-Related Quality of Life: A Korea Health Panel Survey Study," IJERPH, MDPI, vol. 17(23), pages 1-11, December.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
- Fabio Canova & Christian Matthes, 2021.
"Dealing with misspecification in structural macroeconometric models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
- Canova, Fabio & Matthes, Christian, 2019. "Dealing with misspecification in structural macroeconometric models," CEPR Discussion Papers 13511, C.E.P.R. Discussion Papers.
- Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
- Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
More about this item
Keywords
area level models; cAIC; Hierachical Bayesian predictors;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:stintr:v:16:y:2015:i:4:p:523-540:n:4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://stat.gov.pl/en/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.