IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v37y2021i3p591-610n6.html
   My bibliography  Save this article

Probabilistic Projection of Subnational Life Expectancy

Author

Listed:
  • Ševčíková Hana

    (University of Washington, CSSS, Box 354320, Seattle, Washington, 98195–4320, U.S.A.)

  • Raftery Adrian E.

    (University of Washington, Departments of Statistics and Sociology, Box 354322, Seattle, Washington, 98195–4322, U.S.A.)

Abstract

Projecting mortality for subnational units, or regions, is of great interest to practicing demographers. We seek a probabilistic method for projecting subnational life expectancy that is based on the national Bayesian hierarchical model used by the United Nations, and at the same time is easy to use. We propose three methods of this kind. Two of them are variants of simple scaling methods. The third method models life expectancy for a region as equal to national life expectancy plus a region-specific stochastic process which is a heteroskedastic first-order autoregressive process (AR(1)), with a variance that declines to a constant as life expectancy increases. We apply our models to data from 29 countries. In an out-of-sample comparison, the proposed methods outperformed other comparative methods and were well calibrated for individual regions. The AR (1) method performed best in terms of crossover patterns between regions. Although the methods work well for individual regions, there are some limitations when evaluating within-country variation. We identified four countries for which the AR(1) method either underestimated or overestimated the predictive between-region within-country standard deviation. However, none of the competing methods work better in this regard than the AR(1) method. In addition to providing the full distribution of subnational life expectancy, the methods can be used to obtain probabilistic forecasts of age-specific mortality rates.

Suggested Citation

  • Ševčíková Hana & Raftery Adrian E., 2021. "Probabilistic Projection of Subnational Life Expectancy," Journal of Official Statistics, Sciendo, vol. 37(3), pages 591-610, September.
  • Handle: RePEc:vrs:offsta:v:37:y:2021:i:3:p:591-610:n:6
    DOI: 10.2478/jos-2021-0027
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2021-0027
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2021-0027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    2. Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
    3. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    4. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    5. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    6. Bengtsson, Tommy & van Poppel, Frans, 2011. "Socioeconomic inequalities in death from past to present: An introduction," Explorations in Economic History, Elsevier, vol. 48(3), pages 343-356, July.
    7. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    2. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    5. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    6. Raftery, Adrian E. & Ševčíková, Hana, 2023. "Probabilistic population forecasting: Short to very long-term," International Journal of Forecasting, Elsevier, vol. 39(1), pages 73-97.
    7. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    8. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    9. Marius D. Pascariu & Ugofilippo Basellini & José Manuel Aburto & Vladimir Canudas-Romo, 2020. "The Linear Link: Deriving Age-Specific Death Rates from Life Expectancy," Risks, MDPI, vol. 8(4), pages 1-18, October.
    10. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    11. Pascariu, Marius D. & Canudas-Romo, Vladimir & Vaupel, James W., 2018. "The double-gap life expectancy forecasting model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 339-350.
    12. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    13. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    14. Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
    15. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    16. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    17. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    18. McCarthy, David G. & Wang, Po-Lin, 2021. "Pooling mortality risk in Eurozone state pension liabilities: An application of a Bayesian coherent multi-population cohort-based mortality model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 459-485.
    19. Liu, Yanxin & Li, Johnny Siu-Hang, 2018. "A strategy for hedging risks associated with period and cohort effects using q-forwards," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 267-285.
    20. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:37:y:2021:i:3:p:591-610:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.