IDEAS home Printed from https://ideas.repec.org/a/vrs/itmasc/v17y2014i1p74-80n11.html
   My bibliography  Save this article

STORN: Solution to Traversal of Road Networks/ RCTI: izbraucama ceļu tīkla risinājums/ РПДС: Решение дорожных сетей для проезда

Author

Listed:
  • Kampars Janis
  • Shmite Elina

    (Riga Technical University)

Abstract

Цель плана оптимального проезда (ПОП) - обнаружить маршрут, который обеспечил бы проезд по всем улицам на заранее определённом участке. Решая проблему ПОП, особое внимание следует обратить на минимизацию времени проезда по всему маршруту. Ещё один важный фактор - время разработки маршрута, которое быстро возрастает вместе с увеличением соответствующего географического участка. Разрабатывая маршрут, нужно принимать во внимание, что некоторые повороты могут быть запрещены, и что на двусторонних улицах движение идёт в двух направлениях. Возможные области применения ПОП: чистка улиц, доставка посылок, планирование эвакуации, планирование маршрута полицейского патруля и другие. Для определения ПОП с OpenStreetMaps собираются пространственные данные, которые превращаются в графу (сегмент улицы соответствует дуге графы, а пересечение - вершине). Для полного обхода такой графы необходимо посетить все его стороны, по крайней мере, один раз. В статье рассмотрены и экспериментально оценены два разных алгоритма получения плана проезда ПОП. Основываясь на этих алгоритмах, определяется

Suggested Citation

  • Kampars Janis & Shmite Elina, 2014. "STORN: Solution to Traversal of Road Networks/ RCTI: izbraucama ceļu tīkla risinājums/ РПДС: Решение дорожных сетей для проезда," Information Technology and Management Science, Sciendo, vol. 17(1), pages 74-80, December.
  • Handle: RePEc:vrs:itmasc:v:17:y:2014:i:1:p:74-80:n:11
    DOI: 10.1515/itms-2014-0011
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/itms-2014-0011
    Download Restriction: no

    File URL: https://libkey.io/10.1515/itms-2014-0011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    2. J Clossey & G Laporte & P Soriano, 2001. "Solving arc routing problems with turn penalties," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(4), pages 433-439, April.
    3. Turkensteen, Marcel & Ghosh, Diptesh & Goldengorin, Boris & Sierksma, Gerard, 2004. "Iterative Patching and the Asymmetric Traveling Salesman Problem," Research Report 04A27, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    4. Benlian, Alexander & Hess, Thomas, 2011. "Opportunities and risks of Software-as-a-Service: Findings from a survey of IT executives," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 58025, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    6. Edward Minieka, 1979. "The Chinese Postman Problem for Mixed Networks," Management Science, INFORMS, vol. 25(7), pages 643-648, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Baldacci & E Bartolini & G Laporte, 2010. "Some applications of the generalized vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1072-1077, July.
    2. Irnich, Stefan, 2008. "Solution of real-world postman problems," European Journal of Operational Research, Elsevier, vol. 190(1), pages 52-67, October.
    3. Sören Wallbach & Katrin Coleman & Ralf Elbert & Alexander Benlian, 2019. "Multi-sided platform diffusion in competitive B2B networks: inhibiting factors and their impact on network effects," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 693-710, December.
    4. Mario Silic & Andrea Back, 2016. "The Influence of Risk Factors in Decision-Making Process for Open Source Software Adoption," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 151-185, January.
    5. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    6. Uchida, Kenetsu, 2012. "A model evaluating effect of disaster warning issuance conditions on “cry wolf syndrome” in the case of a landslide," European Journal of Operational Research, Elsevier, vol. 218(2), pages 530-537.
    7. Kanishka Gupta & Abdul Wajid & Dolly Gaur, 2024. "Determinants of continuous intention to use FinTech services: the moderating role of COVID-19," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(2), pages 536-552, June.
    8. Goode, Sigi & Lin, Chinho & Fernandez, Walter & Jiang, James J., 2014. "Exploring two explanations of loyalty in application service provision," European Journal of Operational Research, Elsevier, vol. 237(2), pages 649-657.
    9. Banal-Estanol, Albert & Seldeslachts, Jo & Vives, Xavier, 2022. "Ownership Diversification and Product Market Pricing Incentives," CEPR Discussion Papers 17686, C.E.P.R. Discussion Papers.
    10. Sandeep Kumar Sood & Keshav Singh Rawat, 2021. "A scientometric analysis of ICT-assisted disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2863-2881, April.
    11. D Soler & E Martínez & J C Micó, 2008. "A transformation for the mixed general routing problem with turn penalties," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 540-547, April.
    12. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    13. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    14. Luka Matijević & Marko Đurasević & Domagoj Jakobović, 2023. "A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    15. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2019. "Exact Solution of Several Families of Location-Arc Routing Problems," Transportation Science, INFORMS, vol. 53(5), pages 1313-1333, September.
    16. Fagui Liu & Lvshengbiao Wang & Mengke Gui & Yang Zhang & Yulin Lan & Chengqi Lai & Boyuan Zhu, 2023. "A hybrid heuristic algorithm for urban distribution with simultaneous pickup-delivery and time window," Journal of Heuristics, Springer, vol. 29(2), pages 269-311, June.
    17. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    18. Shao, Benjamin B.M. & Lin, Winston T., 2016. "Assessing output performance of information technology service industries: Productivity, innovation and catch-up," International Journal of Production Economics, Elsevier, vol. 172(C), pages 43-53.
    19. Manish Mohan Baral & Amitabh Verma, 2021. "Cloud Computing Adoption for Healthcare: An Empirical Study Using SEM Approach," FIIB Business Review, , vol. 10(3), pages 255-275, September.
    20. Randhawa, Krithika & Wilden, Ralf & Gudergan, Siegfried, 2021. "How to innovate toward an ambidextrous business model? The role of dynamic capabilities and market orientation," Journal of Business Research, Elsevier, vol. 130(C), pages 618-634.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:itmasc:v:17:y:2014:i:1:p:74-80:n:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.