IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v19y2011i3p443-451.html
   My bibliography  Save this article

Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach

Author

Listed:
  • Fang, Zhixiang
  • Zong, Xinlu
  • Li, Qingquan
  • Li, Qiuping
  • Xiong, Shengwu

Abstract

Evacuation planning is a fundamental requirement to ensure that most people can be evacuated to a safe area when a natural accident or an intentional act happens in a stadium environment. The central challenge in evacuation planning is to determine the optimum evacuation routing to safe areas. We describe the evacuation network within a stadium as a hierarchical directed network. We propose a multi-objective optimization approach to solve the evacuation routing problem on the basis of this hierarchical directed network. This problem involves three objectives that need to be achieved simultaneously, such as minimization of total evacuation time, minimization of total evacuation distance and minimal cumulative congestion degrees in an evacuation process. To solve this problem, we designed a modified ant colony optimization (ACO) algorithm, implemented it in the MATLAB software environment, and tested it using a stadium at the Wuhan Sports Center in China. We demonstrate that the algorithm can solve the problem, and has a better evacuation performance in terms of organizing evacuees’ space–time paths than the ACO algorithm, the kth shortest path algorithm and the second generation of non-dominated sorting genetic algorithm were used to improve the results from the kth shortest path algorithm.

Suggested Citation

  • Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
  • Handle: RePEc:eee:jotrge:v:19:y:2011:i:3:p:443-451
    DOI: 10.1016/j.jtrangeo.2010.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692310001596
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2010.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    2. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    3. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    4. Fang, Zhiming & Song, Weiguo & Zhang, Jun & Wu, Hao, 2010. "Experiment and modeling of exit-selecting behaviors during a building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 815-824.
    5. Georgiadou, Paraskevi S. & Papazoglou, Ioannis A. & Kiranoudis, Chris T. & Markatos, Nikolaos C., 2007. "Modeling emergency evacuation for major hazard industrial sites," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1388-1402.
    6. Kaufman, David E. & Nonis, Jason & Smith, Robert L., 1998. "A mixed integer linear programming model for dynamic route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 431-440, August.
    7. Lichun Chen & Elise Miller‐Hooks, 2008. "The building evacuation problem with shared information," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 363-376, June.
    8. L. G. Chalmet & R. L. Francis & P. B. Saunders, 1982. "Network Models for Building Evacuation," Management Science, INFORMS, vol. 28(1), pages 86-105, January.
    9. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    10. So, Stella K. & Daganzo, Carlos F., 2009. "Managing Evacuation Routes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt75d4j8fm, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    2. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 206-218.
    3. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    4. Liu, Ying & Yu, Jiaqi & Yin, Qing & Sun, Cheng & Sun, Ang, 2021. "Impacts of human factors on evacuation performance in university gymnasiums," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    5. Xinhua Mao & Changwei Yuan & Jiahua Gan & Jibiao Zhou, 2019. "Optimal Evacuation Strategy for Parking Lots Considering the Dynamic Background Traffic Flows," IJERPH, MDPI, vol. 16(12), pages 1-20, June.
    6. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianghua Zhang & Yang Liu & Yingxue Zhao & Tianhu Deng, 2020. "Emergency evacuation problem for a multi-source and multi-destination transportation network: mathematical model and case study," Annals of Operations Research, Springer, vol. 291(1), pages 1153-1181, August.
    2. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    3. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    4. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    5. Alf Kimms & Marc Maiwald, 2017. "An exact network flow formulation for cell‐based evacuation in urban areas," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(7), pages 547-555, October.
    6. Gai, Wen-mei & Deng, Yun-feng & Jiang, Zhong-an & Li, Jing & Du, Yan, 2017. "Multi-objective evacuation routing optimization for toxic cloud releases," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 58-68.
    7. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    8. Douglas Bish & Esra Agca & Roger Glick, 2014. "Decision support for hospital evacuation and emergency response," Annals of Operations Research, Springer, vol. 221(1), pages 89-106, October.
    9. Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    11. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    12. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    13. Bretschneider, S. & Kimms, A., 2012. "Pattern-based evacuation planning for urban areas," European Journal of Operational Research, Elsevier, vol. 216(1), pages 57-69.
    14. Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.
    15. Li, Lingfeng & Jin, Mingzhou & Zhang, Li, 2011. "Sheltering network planning and management with a case in the Gulf Coast region," International Journal of Production Economics, Elsevier, vol. 131(2), pages 431-440, June.
    16. Mojahid Saeed Osman & Bala Ram, 2017. "Distributed scheduling approach for dynamic evacuation networks," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 23(6), pages 554-569, November.
    17. Kelle, Peter & Schneider, Helmut & Yi, Huizhi, 2014. "Decision alternatives between expected cost minimization and worst case scenario in emergency supply – Second revision," International Journal of Production Economics, Elsevier, vol. 157(C), pages 250-260.
    18. Yunyue He & Zhong Liu & Jianmai Shi & Yishan Wang & Jiaming Zhang & Jinyuan Liu, 2015. "K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    19. Marc Goerigk & Ismaila Abderhamane Ndiaye, 2016. "Robust flows with losses and improvability in evacuation planning," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 241-270, September.
    20. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:19:y:2011:i:3:p:443-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.