IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3740-d1229508.html
   My bibliography  Save this article

A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports

Author

Listed:
  • Luka Matijević

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Marko Đurasević

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

  • Domagoj Jakobović

    (Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

Logistics problems represent an important class of real-world problems where even small improvements in solution quality can lead to significant decreases in operational costs. However, these problems are usually NP-hard; thus, they are mostly solved using metaheuristic methods. To improve their performance, there is substantial research on crafting new and refined metaheuristics to derive superior solutions. This paper considers a truck routing problem within a naval port, where the objective is to minimize the total distance traveled by all the vehicles to distribute a given set of containers. Due to the large volume of goods that are being transferred through ports, it is imperative to improve the operation times at such ports to improve the throughput. To achieve this goal, a novel variable neighborhood search method that integrates a tabu list, an iterative local search procedure, and parallelization of neighborhood generation is proposed and evaluated. The experimental results demonstrate that the proposed method achieves similar results to the state of the art, but in a smaller amount of time.

Suggested Citation

  • Luka Matijević & Marko Đurasević & Domagoj Jakobović, 2023. "A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3740-:d:1229508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Afsar, Hasan Murat & Afsar, Sezin & Palacios, Juan José, 2021. "Vehicle routing problem with zone-based pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Mancini, Simona & Gansterer, Margaretha & Hartl, Richard F., 2021. "The collaborative consistent vehicle routing problem with workload balance," European Journal of Operational Research, Elsevier, vol. 293(3), pages 955-965.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    4. Tomislav Erdelić & Tonči Carić, 2022. "Goods Delivery with Electric Vehicles: Electric Vehicle Routing Optimization with Time Windows and Partial or Full Recharge," Energies, MDPI, vol. 15(1), pages 1-27, January.
    5. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    6. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    7. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    8. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    9. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    10. José M. Ferrer & M. Teresa Ortuño & Gregorio Tirado, 2020. "A New Ant Colony-Based Methodology for Disaster Relief," Mathematics, MDPI, vol. 8(4), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    2. Thomas R. Visser & Remy Spliet, 2020. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(4), pages 1091-1112, July.
    3. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    4. Lorenzo Ros-McDonnell & Norina Szander & María Victoria de-la-Fuente-Aragón & Robert Vodopivec, 2019. "Scheduling Sustainable Homecare with Urban Transport and Different Skilled Nurses Using an Approximate Algorithm," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    5. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Daiane Maria Genaro Chiroli & Sérgio Fernando Mayerle & João Neiva Figueiredo, 2022. "Using state-space shortest-path heuristics to solve the long-haul point-to-point vehicle routing and driver scheduling problem subject to hours-of-service regulatory constraints," Journal of Heuristics, Springer, vol. 28(1), pages 23-59, February.
    7. Ahmad Mohamadi & Saeed Yaghoubi & Mir Saman Pishvaee, 2019. "Fuzzy multi-objective stochastic programming model for disaster relief logistics considering telecommunication infrastructures: a case study," Operational Research, Springer, vol. 19(1), pages 59-99, March.
    8. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    9. Rafael Grosso & Jesús Muñuzuri & Alejandro Escudero-Santana & Elena Barbadilla-Martín, 2018. "Mathematical Formulation and Comparison of Solution Approaches for the Vehicle Routing Problem with Access Time Windows," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    10. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    11. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    12. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    13. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    14. Adamo, Tommaso & Gendreau, Michel & Ghiani, Gianpaolo & Guerriero, Emanuela, 2024. "A review of recent advances in time-dependent vehicle routing," European Journal of Operational Research, Elsevier, vol. 319(1), pages 1-15.
    15. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    16. Amin, Shohel & Tamima, Umma & Amador-Jiménez, Luis E., 2019. "Optimal pavement management: Resilient roads in support of emergency response of cyclone affected coastal areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 45-61.
    17. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    18. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    19. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    20. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3740-:d:1229508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.