IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v8y2020i1p107-118n6.html
   My bibliography  Save this article

The deFinetti representation of generalised Marshall–Olkin sequences

Author

Listed:
  • Sloot Henrik

    (Technical University of Munich, Parkring 11, 85748 Garching-Hochbrück)

Abstract

We show that each infinite exchangeable sequence τ1, τ2, . . . of random variables of the generalised Marshall–Olkin kind can be uniquely linked to an additive subordinator via its deFinetti representation. This is useful for simulation, model estimation, and model building.

Suggested Citation

  • Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
  • Handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:107-118:n:6
    DOI: 10.1515/demo-2020-0006
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2020-0006
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2020-0006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Embrechts & Marius Hofert, 2013. "A note on generalized inverses," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 423-432, June.
    2. Marco Scarsini & Pietro Muliere, 1987. "Characterization of a Marshall-Olkin type class of distributions," Post-Print hal-00542248, HAL.
    3. Li, Xiaohu & Pellerey, Franco, 2011. "Generalized Marshall-Olkin distributions and related bivariate aging properties," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1399-1409, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    2. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    3. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    4. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    5. Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
    6. Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.
    7. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    8. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    9. Basei, Matteo & Ferrari, Giorgio & Rodosthenous, Neofytos, 2023. "Uncertainty over Uncertainty in Environmental Policy Adoption: Bayesian Learning of Unpredictable Socioeconomic Costs," Center for Mathematical Economics Working Papers 677, Center for Mathematical Economics, Bielefeld University.
    10. Hugo Brango & Angie Guerrero & Humberto Llinás, 2024. "Marshall–Olkin Bivariate Weibull Model with Modified Singularity (MOBW- μ ): A Study of Its Properties and Correlation Structure," Mathematics, MDPI, vol. 12(14), pages 1-16, July.
    11. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    12. Oertel Frank, 2015. "An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-13, September.
    13. Gwo Dong Lin & Xiaoling Dou & Satoshi Kuriki, 2019. "The Bivariate Lack-of-Memory Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 273-297, December.
    14. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    15. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    16. Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022. "Functional Sequential Treatment Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
    17. M. Burzoni & I. Peri & C. M. Ruffo, 2017. "On the properties of the Lambda value at risk: robustness, elicitability and consistency," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1735-1743, November.
    18. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    19. Cyril Bénézet & Emmanuel Gobet & Rodrigo Targino, 2021. "Transform MCMC schemes for sampling intractable factor copula models," Working Papers hal-03334526, HAL.
    20. Ernest Aboagye & Vali Asimit & Tsz Chai Fung & Liang Peng & Qiuqi Wang, 2024. "A Revisit of the Optimal Excess-of-Loss Contract," Papers 2405.00188, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:8:y:2020:i:1:p:107-118:n:6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.