IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v12y2024i1p12n1002.html
   My bibliography  Save this article

Sharp bounds on the survival function of exchangeable min-stable multivariate exponential sequences

Author

Listed:
  • Mai Jan-Frederik

    (XAIA Investment GmbH, Sonnenstr. 19, 80331 München, Germany)

Abstract

We derive lower and upper bounds for the survival function of an exchangeable sequence of random variables, for which the scaled minimum of each finite subgroup has a univariate exponential distribution. These bounds are sharp in the sense that both bounds themselves are attained by exchangeable sequences of the same kind, for which the (non-scaled) minimum of each subgroup has the same univariate exponential distribution as the original sequence. This result is equivalent to inequalities between infinite-dimensional stable tail dependence functions, which leads to inequalities between multivariate extreme-value copulas. In addition, it is explained how an infinite-dimensional symmetric stable tail dependence function can be obtained from its upper bound by censoring certain distributional information. This technique is applied to derive new parametric families.

Suggested Citation

  • Mai Jan-Frederik, 2024. "Sharp bounds on the survival function of exchangeable min-stable multivariate exponential sequences," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-12.
  • Handle: RePEc:vrs:demode:v:12:y:2024:i:1:p:12:n:1002
    DOI: 10.1515/demo-2023-0110
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2023-0110
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2023-0110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Segers, Johan, 2012. "Max-Stable Models For Multivariate Extremes," LIDAM Discussion Papers ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Segers, Johan, 2012. "Max-stable models for multivariate extremes," LIDAM Reprints ISBA 2012012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    4. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    2. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    3. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    6. Bernhart German & Mai Jan-Frederik & Scherer Matthias, 2015. "On the construction of low-parametric families of min-stable multivariate exponential distributions in large dimensions," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, May.
    7. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    8. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    9. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    10. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    11. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    12. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    13. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    14. Krupskii, Pavel & Genton, Marc G., 2019. "A copula model for non-Gaussian multivariate spatial data," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 264-277.
    15. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    16. Opitz, T., 2013. "Extremal t processes: Elliptical domain of attraction and a spectral representation," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 409-413.
    17. Kiriliouk, Anna & Segers, Johan & Warchol, Michal, 2014. "Nonparametric estimation of extremal dependence," LIDAM Discussion Papers ISBA 2014044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Catalina Bolancé & Carlos Alberto Acuña, 2021. "A New Kernel Estimator of Copulas Based on Beta Quantile Transformations," Mathematics, MDPI, vol. 9(10), pages 1-16, May.
    19. Whitney K. Huang & Daniel S. Cooley & Imme Ebert-Uphoff & Chen Chen & Snigdhansu Chatterjee, 2019. "New Exploratory Tools for Extremal Dependence: $$\chi $$ χ Networks and Annual Extremal Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 484-501, September.
    20. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:12:y:2024:i:1:p:12:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.