IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v6y2006i3p364-376.html
   My bibliography  Save this article

Jackknife instrumental variables estimation in Stata

Author

Listed:
  • Brian P. Poi

    (StataCorp)

Abstract

The two-stage least-squares (2SLS) instrumental variables estimator is commonly used to address endogeneity. However, the estimator suffers from bias that is exacerbated when the instruments are only weakly correlated with the en- dogenous variables and when many instruments are used. In this article, I discuss jackknife instrumental variables estimation as an alternative to 2SLS. Monte Carlo simulations comparing the jackknife instrument variables estimators to 2SLS and limited information maximum likelihood (LIML) show that two of the four vari- ants perform remarkably well even when 2SLS does not. In a weak-instrument experiment, the two best performing jackknife estimators also outperform LIML. Copyright 2006 by StataCorp LP.

Suggested Citation

  • Brian P. Poi, 2006. "Jackknife instrumental variables estimation in Stata," Stata Journal, StataCorp LP, vol. 6(3), pages 364-376, September.
  • Handle: RePEc:tsj:stataj:v:6:y:2006:i:3:p:364-376
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0108
    Download Restriction: no

    File URL: http://www.stata-journal.com/software/sj6-3/st0108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    3. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    4. Marcelo J. Moreira & Brian P. Poi, 2003. "Implementing tests with correct size in the simultaneous equations model," Stata Journal, StataCorp LP, vol. 3(1), pages 57-70, March.
    5. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    6. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    7. Phillips, Garry D A & Hale, C, 1977. "The Bias of Instrumental Variable Estimators of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 219-228, February.
    8. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    9. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giesing, Yvonne & Schikora, Felicitas, 2023. "Emigrants’ missing votes," European Journal of Political Economy, Elsevier, vol. 78(C).
    2. Anikó Bíró, 2013. "Subjective mortality hazard shocks and the adjustment of consumption expenditures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 26(4), pages 1379-1408, October.
    3. Yashobanta Parida & Swati Saini & Joyita Roy Chowdhury, 2021. "Economic growth in the aftermath of floods in Indian states," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 535-561, January.
    4. Mohammed S. Y. Omran & Mohammad A. A. Zaid & Aladdin Dwekat, 2021. "The relationship between integrated reporting and corporate environmental performance: A green trial," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 427-445, January.
    5. Austin Nichols, 2007. "Causal inference with observational data," Stata Journal, StataCorp LP, vol. 7(4), pages 507-541, December.
    6. Fu, Tong & Yang, Siying & Jian, Ze, 2022. "Government support for environmental regulation: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Fouda Owoundi, Jean-Pierre & Mbassi, Christophe Martial & Owoundi, Ferdinand, 2021. "Does inflation targeting weaken financial stability? Assessing the role of institutional quality," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 374-398.
    8. Timothy Watson & Paul Buckingham, 2023. "Australian Government COVID‐19 Business Supports," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(1), pages 124-140, March.
    9. Arunachalam, S. & Ramaswami, Sridhar N. & Patel, Pankaj C. & Chai, Linlin, 2022. "Innovation-based strategic flexibility (ISF): Role of CEO ties with marketing and R&D," International Journal of Research in Marketing, Elsevier, vol. 39(3), pages 927-946.
    10. Jarle Aarstad, 2012. "Do Structural Holes and Network Connectivity Really Affect Entrepreneurial Performance?," Journal of Entrepreneurship and Innovation in Emerging Economies, Entrepreneurship Development Institute of India, vol. 21(2), pages 253-268, September.
    11. Croes, Robertico & Ridderstaat, Jorge & van Niekerk, Mathilda, 2018. "Connecting quality of life, tourism specialization, and economic growth in small island destinations: The case of Malta," Tourism Management, Elsevier, vol. 65(C), pages 212-223.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    2. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    5. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    6. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    7. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    8. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    9. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    10. Rieber, Alexander & Schechinger, Steffen, 2019. "Herding Behavior between Rating Agencies," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203580, Verein für Socialpolitik / German Economic Association.
    11. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Daniel A. Ackerberg & Paul J. Devereux, 2009. "Improved JIVE Estimators for Overidentified Linear Models with and without Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 351-362, May.
    14. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    15. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    16. Namhyun Kim & Winfried Pohlmeier, 2016. "A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(6), pages 915-924, December.
    17. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    18. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    19. John C. Chao & Jerry A. Hausman & Whitney K. Newey & Norman R. Swanson & Tiemen Woutersen, 2012. "Combining Two Consistent Estimators," Advances in Econometrics, in: Essays in Honor of Jerry Hausman, pages 33-53, Emerald Group Publishing Limited.
    20. Asadul Islam & Dietrich K. Fausten, 2008. "Skilled Immigration and Wages in Australia," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 66-82, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:6:y:2006:i:3:p:364-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.