IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v49y2017i7p737-751.html
   My bibliography  Save this article

Allocation of reliability--redundancy and spares inventory under Poisson fleet expansion

Author

Listed:
  • Tongdan Jin
  • Heidi Taboada
  • Jose Espiritu
  • Haitao Liao

Abstract

This article proposes an integrated product-service model to ensure the system availability by concurrently allocating reliability, redundancy, and spare parts for a variable fleet. In the literature, reliability and inventory allocation models are often developed based on a static installed base. The decision becomes really challenging during new product introduction, as the demand for spare parts is nonstationary due to the fleet expansion. Under the system availability criteria, our objective is to minimize the fleet costs associated with design, manufacturing, and after-sales support. We tackle this reliability--inventory allocation problem in two steps. First, to accommodate the fleet growth effects, the nonstationary spare parts demand stream is modeled as a sum of randomly delayed renewal processes. When the component's failure time is exponential, the mean and variance of the lead time inventory demand are explicitly derived. Second, we propose an adaptive base stock policy against the time-varying parts demand rate. A bisection search combined with metaheuristics is used to find the optimal solution. Numerical examples show that spare parts inventory results in a lower fleet cost under short-term performance-based contracts, whereas reliability--redundancy is preferred for long-term service programs.

Suggested Citation

  • Tongdan Jin & Heidi Taboada & Jose Espiritu & Haitao Liao, 2017. "Allocation of reliability--redundancy and spares inventory under Poisson fleet expansion," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 737-751, July.
  • Handle: RePEc:taf:uiiexx:v:49:y:2017:i:7:p:737-751
    DOI: 10.1080/24725854.2016.1271963
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2016.1271963
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2016.1271963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong-Zhong Huang & Jian Qu & Ming Zuo, 2009. "Genetic-algorithm-based optimal apportionment of reliability and redundancy under multiple objectives," IISE Transactions, Taylor & Francis Journals, vol. 41(4), pages 287-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Zhang & Kai Huang & Yufei Yuan, 2021. "Spare Parts Inventory Management: A Literature Review," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    2. Miltiadis Chalikias & Panagiota Lalou & Michalis Skordoulis, 2019. "Customer Exposure to Sellers, Probabilistic Optimization and Profit Research," Mathematics, MDPI, vol. 7(7), pages 1-7, July.
    3. Qin, Xuwei & Jiang, Zhong-Zhong & Sun, Minghe & Tang, Liang & Liu, Xiaoran, 2021. "Repairable spare parts provisioning for multiregional expanding fleets of equipment under performance-based contracting," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    2. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    3. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    4. Pradip Kundu, 2021. "A multi-objective reliability-redundancy allocation problem with active redundancy and interval type-2 fuzzy parameters," Operational Research, Springer, vol. 21(4), pages 2433-2458, December.
    5. Hemant Kumar & Shiv Prasad Yadav, 2019. "Fuzzy rule-based reliability analysis using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 953-972, October.
    6. Abdullah Konak & Alice E. Smith, 2011. "Efficient Optimization of Reliable Two-Node Connected Networks: A Biobjective Approach," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 430-445, August.
    7. Hui Xiao & Rui Peng & Wenbin Wang & Fei Zhao, 2016. "Optimal element loading for linear sliding window systems," Journal of Risk and Reliability, , vol. 230(1), pages 75-84, February.
    8. Andrés Cacereño & David Greiner & Blas J. Galván, 2021. "Multi-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-II," Mathematics, MDPI, vol. 9(15), pages 1-39, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:49:y:2017:i:7:p:737-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.