IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v84y2023ics1042443123000057.html
   My bibliography  Save this article

Dynamic portfolio allocation for financial markets: A perspective of competitive-cum-compensatory strategy

Author

Listed:
  • Zhang, Cheng
  • Gong, Xiaomin
  • Zhang, Jingshu
  • Chen, Zhiwei

Abstract

Portfolio allocation is an important research branch in the realm of financial management and financial engineering. In this paper, a dynamic portfolio allocation problem considering the competitive-cum- compensatory relationship among decision objectives is discussed. Interval type-2 fuzzy numbers that provide more flexibility for processing uncertainty are innovatively utilized to characterize asset returns. To capture the behavioral characteristics of investors’ bounded rationality, prospect theory with dynamic updating of loss aversion rate and reference wealth is introduced. The expected semi-absolute deviation and the entropy function based on the Minkowski measure are adopted to describe the risk and diversification degree of portfolio allocation, respectively. With this description, a dynamic multi-objective portfolio allocation model is formulated. Regarding the multi-dimensional characteristics of the problem, competitive-cum-compensatory strategy-based fuzzy goal programming is embedded in the whole optimization process; thus, the model is transformed into a single-objective form for the solution. Several interesting conclusions are drawn from empirical studies in two financial markets. The robustness and superiority of the proposed model are verified by multi-angle comparison and sensitivity analysis. This research not only enriches and extends the field of dynamic portfolio allocation in the fuzzy context, but also offers an effective means for the optimization of multi-objective portfolio models.

Suggested Citation

  • Zhang, Cheng & Gong, Xiaomin & Zhang, Jingshu & Chen, Zhiwei, 2023. "Dynamic portfolio allocation for financial markets: A perspective of competitive-cum-compensatory strategy," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:intfin:v:84:y:2023:i:c:s1042443123000057
    DOI: 10.1016/j.intfin.2023.101737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443123000057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2023.101737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortin, Ines & Hlouskova, Jaroslava, 2011. "Optimal asset allocation under linear loss aversion," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2974-2990, November.
    2. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    3. Jean-Philippe Bouchaud & Marc Potters & Jean-Pierre Aguilar, 1997. "Missing information and asset allocation," Science & Finance (CFM) working paper archive 500045, Science & Finance, Capital Fund Management.
    4. Prakash, Arun J. & Chang, Chun-Hao & Pactwa, Therese E., 2003. "Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets," Journal of Banking & Finance, Elsevier, vol. 27(7), pages 1375-1390, July.
    5. Hatemi-J, Abdulnasser & Hajji, Mohamed Ali & El-Khatib, Youssef, 2022. "Exact solution for the portfolio diversification problem based on maximizing the risk adjusted return," Research in International Business and Finance, Elsevier, vol. 59(C).
    6. Harris, Richard D. F. & Mazibas, Murat, 2022. "Portfolio optimization with behavioural preferences and investor memory," European Journal of Operational Research, Elsevier, vol. 296(1), pages 368-387.
    7. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    8. Li, Bo & Zhang, Ranran, 2021. "A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Mansini, Renata & Speranza, Maria Grazia, 1999. "Heuristic algorithms for the portfolio selection problem with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 114(2), pages 219-233, April.
    10. Jin, Xiu & Chen, Na & Yuan, Ying, 2019. "Multi-period and tri-objective uncertain portfolio selection model: A behavioral approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 492-504.
    11. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    12. Fang, Yong & Chen, Lihua & Fukushima, Masao, 2008. "A mixed R&D projects and securities portfolio selection model," European Journal of Operational Research, Elsevier, vol. 185(2), pages 700-715, March.
    13. Shi, Yun & Cui, Xiangyu & Li, Duan, 2015. "Discrete-time behavioral portfolio selection under cumulative prospect theory," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 283-302.
    14. Best, Michael J. & Grauer, Robert R., 2016. "Prospect theory and portfolio selection," Journal of Behavioral and Experimental Finance, Elsevier, vol. 11(C), pages 13-17.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 2001. "A fuzzy goal programming approach to portfolio selection," European Journal of Operational Research, Elsevier, vol. 133(2), pages 287-297, January.
    17. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Ying Fu & Kien Ng & Boray Huang & Huei Huang, 2015. "Portfolio optimization with transaction costs: a two-period mean-variance model," Annals of Operations Research, Springer, vol. 233(1), pages 135-156, October.
    20. Rodríguez, Yeny E. & Gómez, Juan M. & Contreras, Javier, 2021. "Diversified behavioral portfolio as an alternative to Modern Portfolio Theory," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    21. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    22. Tolga, A. Cagri, 2020. "Real options valuation of an IoT based healthcare device with interval Type-2 fuzzy numbers," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    23. Xiaoyue Li & A. Sinem Uysal & John M. Mulvey, 2021. "Multi-Period Portfolio Optimization using Model Predictive Control with Mean-Variance and Risk Parity Frameworks," Papers 2103.10813, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fortin, Ines & Hlouskova, Jaroslava, 2024. "Prospect theory and asset allocation," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 214-240.
    2. Jin, Xiu & Chen, Na & Yuan, Ying, 2019. "Multi-period and tri-objective uncertain portfolio selection model: A behavioral approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 492-504.
    3. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    4. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
    5. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    6. Rubio-Herrero, Javier & Baykal-Gürsoy, Melike, 2020. "Mean-variance analysis of the newsvendor problem with price-dependent, isoelastic demand," European Journal of Operational Research, Elsevier, vol. 283(3), pages 942-953.
    7. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    8. Gatzert, Nadine & Martin, Alexander & Schmidt, Martin & Seith, Benjamin & Vogl, Nikolai, 2021. "Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: A mixed-integer multistage stochastic model and a moving-horizon approach," European Journal of Operational Research, Elsevier, vol. 290(2), pages 734-748.
    9. Pfiffelmann, Marie & Roger, Tristan & Bourachnikova, Olga, 2016. "When Behavioral Portfolio Theory meets Markowitz theory," Economic Modelling, Elsevier, vol. 53(C), pages 419-435.
    10. Aouni, Belaid & Colapinto, Cinzia & La Torre, Davide, 2014. "Financial portfolio management through the goal programming model: Current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 234(2), pages 536-545.
    11. Grauer, Robert R., 2013. "Limiting losses may be injurious to your wealth," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5088-5100.
    12. Zsurkis, Gabriel & Nicolau, João & Rodrigues, Paulo M.M., 2024. "First passage times in portfolio optimization: A novel nonparametric approach," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1074-1085.
    13. Liu, Shuangzhe & Ma, Tiefeng & Polasek, Wolfgang, 2014. "Spatial system estimators for panel models: A sensitivity and simulation study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 78-102.
    14. Michael J. Best & Robert R. Grauer, 2017. "Humans, Econs and Portfolio Choice," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-30, June.
    15. Jesus Crespo Cuaresma & Ines Fortin & Jaroslava Hlouskova, 2018. "Exchange rate forecasting and the performance of currency portfolios," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 519-540, August.
    16. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    17. Fortin, Ines & Hlouskova, Jaroslava, 2012. "Optimal Asset Allocation under Quadratic Loss Aversion," Economics Series 291, Institute for Advanced Studies.
    18. Zhang, Hanwen & Dang, Duy-Minh, 2024. "A monotone numerical integration method for mean–variance portfolio optimization under jump-diffusion models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 112-140.
    19. Kuen-Suan Chen & Ruey-Chyn Tsaur & Nei-Chih Lin, 2022. "Dimensions Analysis to Excess Investment in Fuzzy Portfolio Model from the Threshold of Guaranteed Return Rates," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    20. Lin Chen & Jin Peng & Bo Zhang & Isnaini Rosyida, 2017. "Diversified models for portfolio selection based on uncertain semivariance," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 637-648, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:84:y:2023:i:c:s1042443123000057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.