IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v43y2016i4p663-680.html
   My bibliography  Save this article

MOGADOR revisited: Improving a genetic approach to multi-objective corridor search

Author

Listed:
  • Eric Daniel Fournier

Abstract

The MOGADOR algorithm is a specialized heuristic approach to the shortest path problem, which employs genetic operators to the search for near optimal corridors within the context of multiple independent objectives. This article expands upon the work contained in the MOGADOR algorithm’s debut publication by introducing a set of refined techniques for initializing the algorithm, which are responsive to the characteristics of the problem specification, the desired runtime, and the global quality of the output solution set. A core component of these techniques is the introduction of a novel process for constructing so-called pseudo-random walks that is based on the repetitive sampling of a dynamically parameterized bivariate-normal distribution. Guidance is provided regarding the appropriate parameterization of the proposed initialization procedure for a variety of problem contexts. The article concludes with a prospective treatment of different approaches to the parallelization of the algorithm’s various components and references an open source library containing the source code for the various new algorithms introduced.

Suggested Citation

  • Eric Daniel Fournier, 2016. "MOGADOR revisited: Improving a genetic approach to multi-objective corridor search," Environment and Planning B, , vol. 43(4), pages 663-680, July.
  • Handle: RePEc:sae:envirb:v:43:y:2016:i:4:p:663-680
    DOI: 10.1177/0265813515618562
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0265813515618562
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0265813515618562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maria Scaparra & Richard Church & F. Medrano, 2014. "Corridor location: the multi-gateway shortest path model," Journal of Geographical Systems, Springer, vol. 16(3), pages 287-309, July.
    2. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pijls, Wim & Post, Henk, 2009. "A new bidirectional search algorithm with shortened postprocessing," European Journal of Operational Research, Elsevier, vol. 198(2), pages 363-369, October.
    2. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    3. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    4. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    5. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.
    6. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    7. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    8. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    9. Daniel Selva & Bruce Cameron & Ed Crawley, 2016. "Patterns in System Architecture Decisions," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 477-497, November.
    10. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.
    11. Daniel Delling & Giacomo Nannicini, 2012. "Core Routing on Dynamic Time-Dependent Road Networks," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 187-201, May.
    12. Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
    13. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    14. Castro de Andrade, Rafael, 2016. "New formulations for the elementary shortest-path problem visiting a given set of nodes," European Journal of Operational Research, Elsevier, vol. 254(3), pages 755-768.
    15. Fu, Liping & Rilett, L. R., 1998. "Expected shortest paths in dynamic and stochastic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 499-516, September.
    16. Yang, Lixing & Zhang, Yan & Li, Shukai & Gao, Yuan, 2016. "A two-stage stochastic optimization model for the transfer activity choice in metro networks," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 271-297.
    17. Antonio Polimeni & Antonino Vitetta, 2013. "Optimising Waiting at Nodes in Time-Dependent Networks: Cost Functions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 805-818, March.
    18. Alex A. Kurzhanskiy, 2022. "A Methodology for Estimating Vehicle Route Choice from Sparse Flow Measurements in a Traffic Network," Mathematics, MDPI, vol. 10(3), pages 1-11, February.
    19. Redmond, Michael & Campbell, Ann Melissa & Ehmke, Jan Fabian, 2022. "Reliability in public transit networks considering backup itineraries," European Journal of Operational Research, Elsevier, vol. 300(3), pages 852-864.
    20. Volgenant, A., 2002. "Solving some lexicographic multi-objective combinatorial problems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 578-584, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:43:y:2016:i:4:p:663-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.