IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v112y2018icp1-11.html
   My bibliography  Save this article

Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry

Author

Listed:
  • Wu, Shanhua
  • Yang, Zhongzhen

Abstract

The location behaviors of manufacturing industries are analyzed in the context of the economic globalization, and a programming model that integrates the flow-capturing location model with the traffic assignment model is built to optimize the location of manufacturing industries based on the world-wide transport multi-mode network. The flow-capturing location model is used to determine the location scheme, and the traffic assignment model is used to calculate the corresponding attributes of the freight flows in the transport network. A genetic algorithm is designed to solve the model and the Chinese steel industry is used as the case study. The result shows that the proposed method could help decision makers to effectively make location decisions for manufacturing industries.

Suggested Citation

  • Wu, Shanhua & Yang, Zhongzhen, 2018. "Locating manufacturing industries by flow-capturing location model – Case of Chinese steel industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 1-11.
  • Handle: RePEc:eee:transe:v:112:y:2018:i:c:p:1-11
    DOI: 10.1016/j.tre.2018.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517310128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. Erkut, Erhan & Moran, Stephen R., 1991. "Locating obnoxious facilities in the public sector: An application of the analytic hierarchy process to municipal landfill siting decisions," Socio-Economic Planning Sciences, Elsevier, vol. 25(2), pages 89-102.
    3. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    4. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    5. Chen, Lujie & Olhager, Jan & Tang, Ou, 2014. "Manufacturing facility location and sustainability: A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 149(C), pages 154-163.
    6. Bellettini, Giorgio & Kempf, Hubert, 2013. "Why not in your backyard? On the location and size of a public facility," Regional Science and Urban Economics, Elsevier, vol. 43(1), pages 22-30.
    7. Oded Berman & Dimitris Bertsimas & Richard C. Larson, 1995. "Locating Discretionary Service Facilities, II: Maximizing Market Size, Minimizing Inconvenience," Operations Research, INFORMS, vol. 43(4), pages 623-632, August.
    8. Amir Khakbaz & Ali Nookabadi & S. Shetab-bushehri, 2013. "A Model for Locating Park-and-Ride Facilities on Urban Networks Based on Maximizing Flow Capture: A Case Study of Isfahan, Iran," Networks and Spatial Economics, Springer, vol. 13(1), pages 43-66, March.
    9. Weiping Zeng & Ignacio Castillo & M. Hodgson, 2010. "A Generalized Model for Locating Facilities on a Network with Flow-Based Demand," Networks and Spatial Economics, Springer, vol. 10(4), pages 579-611, December.
    10. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    11. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    12. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    13. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    14. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    15. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    16. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    17. An, Yu & Zeng, Bo & Zhang, Yu & Zhao, Long, 2014. "Reliable p-median facility location problem: two-stage robust models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 54-72.
    18. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
    19. Horner, Mark W. & Groves, Sara, 2007. "Network flow-based strategies for identifying rail park-and-ride facility locations," Socio-Economic Planning Sciences, Elsevier, vol. 41(3), pages 255-268, September.
    20. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    21. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baofeng Sun & Jiaojiao Liu & Junyi Hao & Xiuxiu Shen & Xinhua Mao & Xianmin Song, 2020. "Maintenance Decision-Making of an Urban Rail Transit System in a Regionalized Network-Wide Perspective," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    2. Chenxi Li & Kening Wu & Xiangyu Gao, 2020. "Manufacturing industry agglomeration and spatial clustering: Evidence from Hebei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2941-2965, April.
    3. Xing Gao & Keyu Zhai & Yue Qiu & Mengqiu Cao & Meiling Wu, 2020. "Innovation Institution and Spatial Transfer of Energy Industry: The Case of Jiangsu Province, China," SAGE Open, , vol. 10(1), pages 21582440199, January.
    4. Feng, Hongxiang & Grifoll, Manel & Yang, Zhongzhen & Zheng, Pengjun, 2021. "Latest challenges to ports in public-private partnership: Case of Dandong Port (China)'s bankruptcy," Transport Policy, Elsevier, vol. 110(C), pages 293-305.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liying Yan & Manel Grifoll & Hongxiang Feng & Pengjun Zheng & Chunliang Zhou, 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    2. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    3. Marković, Nikola & Ryzhov, Ilya O. & Schonfeld, Paul, 2017. "Evasive flow capture: A multi-period stochastic facility location problem with independent demand," European Journal of Operational Research, Elsevier, vol. 257(2), pages 687-703.
    4. Derya Celik Turkoglu & Mujde Erol Genevois, 2020. "A comparative survey of service facility location problems," Annals of Operations Research, Springer, vol. 292(1), pages 399-468, September.
    5. Tanaka, Ken-ichi & Furuta, Takehiro & Toriumi, Shigeki, 2019. "Railway flow interception location model: Model development and case study of Tokyo metropolitan railway network," Operations Research Perspectives, Elsevier, vol. 6(C).
    6. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    7. Rodolfo Mendoza-Gómez & Roger Z. Ríos-Mercado & Karla B. Valenzuela-Ocaña, 2019. "An Efficient Decision-Making Approach for the Planning of Diagnostic Services in a Segmented Healthcare System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1631-1665, September.
    8. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    9. Mingjian Wu & Tae J. Kwon & Karim El-Basyouny, 2020. "A Citywide Location-Allocation Framework for Driver Feedback Signs: Optimizing Safety and Coverage of Vulnerable Road Users," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    10. Capar, Ismail & Kuby, Michael & Leon, V. Jorge & Tsai, Yu-Jiun, 2013. "An arc cover–path-cover formulation and strategic analysis of alternative-fuel station locations," European Journal of Operational Research, Elsevier, vol. 227(1), pages 142-151.
    11. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    12. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    13. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    14. Kress, Dominik & Pesch, Erwin, 2012. "Sequential competitive location on networks," European Journal of Operational Research, Elsevier, vol. 217(3), pages 483-499.
    15. Emde, Simon & Boysen, Nils, 2012. "Optimally locating in-house logistics areas to facilitate JIT-supply of mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 135(1), pages 393-402.
    16. Shulin Wang & Shanhua Wu, 2023. "Optimizing the Location of Virtual-Shopping-Experience Stores Based on the Minimum Impact on Urban Traffic," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    17. Costa, Fabrício Rodrigues & Ribeiro, Carlos Antonio Alvares Soares & Marcatti, Gustavo Eduardo & Lorenzon, Alexandre Simões & Teixeira, Thaisa Ribeiro & Domingues, Getulio Fonseca & Castro, Nero Lemos, 2020. "GIS applied to location of bioenergy plants in tropical agricultural areas," Renewable Energy, Elsevier, vol. 153(C), pages 911-918.
    18. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    19. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    20. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:112:y:2018:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.