IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v31y2008i4p399-416.html
   My bibliography  Save this article

Auction-Based Congestion Pricing

Author

Listed:
  • Dušan Teodorović
  • Konstantinos Triantis
  • Praveen Edara
  • Yueqin Zhao
  • Snežana Mladenović

Abstract

Planners, engineers and economists have introduced various demand management methods in an attempt to reduce the fast growing traffic congestion. The basic idea behind various demand management strategies is to force drivers to travel and use transportation facilities more during off-peak hours and less during peak hours, as well as to increase the usage of underutilized routes. In this paper, a new demand management concept -- Auction-based Congestion Pricing -- is proposed and modeled.

Suggested Citation

  • Dušan Teodorović & Konstantinos Triantis & Praveen Edara & Yueqin Zhao & Snežana Mladenović, 2008. "Auction-Based Congestion Pricing," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(4), pages 399-416, March.
  • Handle: RePEc:taf:transp:v:31:y:2008:i:4:p:399-416
    DOI: 10.1080/03081060802335042
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060802335042
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060802335042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sven de Vries & Rakesh V. Vohra, 2003. "Combinatorial Auctions: A Survey," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 284-309, August.
    2. Vikrey W., 1994. "Statement to the Joint Committee on Washington, DC, Metropolitan Problems (with a foreword by Richard Arnott and Marvin Kraus)," Journal of Urban Economics, Elsevier, vol. 36(1), pages 42-65, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olarte, Rafael & Haghani, Ali, 2018. "Introducing and testing a game-theoretic model for a lottery-based metering system in Minneapolis, United States," Transport Policy, Elsevier, vol. 62(C), pages 63-78.
    2. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    3. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    4. Fan, Wenbo & Xiao, Feng & Nie, Yu (Macro), 2022. "Managing bottleneck congestion with tradable credits under asymmetric transaction cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Sabounchi, Nasim S. & Triantis, Konstantinos P. & Sarangi, Sudipta & Liu, Shiyong, 2014. "Dynamic simulation modeling and policy analysis of an area-based congestion pricing scheme for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 357-383.
    6. Han, Linghui & Zhu, Chengjuan & Wang, David Z.W. & Sun, Huijun & Tan, Zhijia & Meng, Meng, 2019. "Discrete-time dynamic road congestion pricing under stochastic user optimal principle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 24-36.
    7. Yang, Hai & Wang, Xiaolei, 2011. "Managing network mobility with tradable credits," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 580-594, March.
    8. Yang, Kaidi & Roca-Riu, Mireia & Menéndez, Mónica, 2019. "An auction-based approach for prebooked urban logistics facilities," Omega, Elsevier, vol. 89(C), pages 193-211.
    9. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mishra, Debasis & Parkes, David C., 2007. "Ascending price Vickrey auctions for general valuations," Journal of Economic Theory, Elsevier, vol. 132(1), pages 335-366, January.
    2. Gansterer, Margaretha & Hartl, Richard F. & Sörensen, Kenneth, 2020. "Pushing frontiers in auction-based transport collaborations," Omega, Elsevier, vol. 94(C).
    3. Ngoc Mai Tran & Josephine Yu, 2015. "Product-Mix Auctions and Tropical Geometry," Papers 1505.05737, arXiv.org, revised Oct 2017.
    4. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Capacity Sharing in Networks," Papers 2307.03994, arXiv.org, revised Nov 2024.
    5. Bourbeau, Benoit & Gabriel Crainic, Teodor & Gendreau, Michel & Robert, Jacques, 2005. "Design for optimized multi-lateral multi-commodity markets," European Journal of Operational Research, Elsevier, vol. 163(2), pages 503-529, June.
    6. Tobias Buer & Rasmus Haass, 2018. "Cooperative liner shipping network design by means of a combinatorial auction," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 686-711, December.
    7. Oktay Günlük & Lászlo Ladányi & Sven de Vries, 2005. "A Branch-and-Price Algorithm and New Test Problems for Spectrum Auctions," Management Science, INFORMS, vol. 51(3), pages 391-406, March.
    8. M A Krajewska & H Kopfer & G Laporte & S Ropke & G Zaccour, 2008. "Horizontal cooperation among freight carriers: request allocation and profit sharing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1483-1491, November.
    9. Talebiyan, Hesam & Dueñas-Osorio, Leonardo, 2023. "Auctions for resource allocation and decentralized restoration of interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Ervasti, Valtteri & Leskelä, Riikka-Leena, 2010. "Allocative efficiency in simulated multiple-unit combinatorial auctions with quantity support," European Journal of Operational Research, Elsevier, vol. 203(1), pages 251-260, May.
    11. Richard Li-Yang Chen & Shervin AhmadBeygi & Amy Cohn & Damian R. Beil & Amitabh Sinha, 2009. "Solving Truckload Procurement Auctions Over an Exponential Number of Bundles," Transportation Science, INFORMS, vol. 43(4), pages 493-510, November.
    12. Song, Jiongjiong & Regan, Amelia, 2005. "Approximation algorithms for the bid construction problem in combinatorial auctions for the procurement of freight transportation contracts," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 914-933, December.
    13. Jing Yu & Lining Xing & Xu Tan, 0. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    14. Park, Sunju & Rothkopf, Michael H., 2005. "Auctions with bidder-determined allowable combinations," European Journal of Operational Research, Elsevier, vol. 161(2), pages 399-415, March.
    15. Nielsen, Kurt, 2005. "Auctioning Payment Entitlements," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24566, European Association of Agricultural Economists.
    16. Wada, Kentaro & Akamatsu, Takashi, 2013. "A hybrid implementation mechanism of tradable network permits system which obviates path enumeration: An auction mechanism with day-to-day capacity control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 94-112.
    17. Nguyen, Tri-Dung, 2014. "A fast approximation algorithm for solving the complete set packing problem," European Journal of Operational Research, Elsevier, vol. 237(1), pages 62-70.
    18. Mesa-Arango, Rodrigo & Ukkusuri, Satish V., 2013. "Benefits of in-vehicle consolidation in less than truckload freight transportation operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 113-125.
    19. Lars Ehlers & Bettina Klaus, 2007. "Consistent House Allocation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 30(3), pages 561-574, March.
    20. John Y. Zhu, 2022. "The fractional multidimensional knapsack problem: solution and uniqueness," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(1), pages 95-103, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:31:y:2008:i:4:p:399-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.