IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i1p65-77.html
   My bibliography  Save this article

Downstream Demand Inference in decentralized supply chains

Author

Listed:
  • Tliche, Y.
  • Taghipour, A.
  • Canel-Depitre, B.

Abstract

For many years, the main objective of studying decentralized supply chains was to demonstrate that a better inter-firm collaboration could lead to a better overall performance of the system. The literature has demonstrated that collaborating by sharing information, even in a partial way, can lead to near-optimal solutions. In this context, many researchers have studied a phenomenon called Downstream Demand Inference (DDI), which presents an effective demand management strategy to deal with forecast problems. DDI allows the upstream actor to infer the demand received by the downstream actor without the need of information sharing. Recent research showed that DDI is possible with Simple Moving Average (SMA) forecast method, and was verified for an autoregressive [AR(1)] demand process, a moving average [MA(1)] demand process, and an autoregressive moving average [ARMA(1, 1)] demand process. In this paper, we extend the strategy's results by considering causal invertible [ARMA(p, q)] demand processes. We develop Mean Squared Error and Average Inventory level expressions for [ARMA(p, q)] demand under DDI strategy, No Information Sharing (NIS) and Forecast Information Sharing (FIS) strategies. We compute the Bullwhip effect generated by employing SMA method and we simulate the resulted improvement compared to employing MMSE method. We analyze the sensibility of the three performance metrics in respect with lead-time value, SMA and ARMA(p, q) parameters. We compare DDI results with NIS and FIS strategies’ results and we show experimentally that DDI generally outperforms NIS. Finally, we provide a revenue sharing contract as a practical recommendation to incite supply chain managers to adopt DDI strategy.

Suggested Citation

  • Tliche, Y. & Taghipour, A. & Canel-Depitre, B., 2019. "Downstream Demand Inference in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 274(1), pages 65-77.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:1:p:65-77
    DOI: 10.1016/j.ejor.2018.09.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.09.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
    2. Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
    3. John Boylan & Aris Syntetos, 2006. "Accuracy and Accuracy Implication Metrics for Intermittent Demand," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 39-42, June.
    4. Vishal Gaur & Avi Giloni & Sridhar Seshadri, 2005. "Information Sharing in a Supply Chain Under ARMA Demand," Management Science, INFORMS, vol. 51(6), pages 961-969, June.
    5. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    6. Haim Mendelson, 2000. "Organizational Architecture and Success in the Information Technology Industry," Management Science, INFORMS, vol. 46(4), pages 513-529, April.
    7. Lode Li, 2002. "Information Sharing in a Supply Chain with Horizontal Competition," Management Science, INFORMS, vol. 48(9), pages 1196-1212, September.
    8. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    9. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    10. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    11. Krishnan S. Anand & Manu Goyal, 2009. "Strategic Information Management Under Leakage in a Supply Chain," Management Science, INFORMS, vol. 55(3), pages 438-452, March.
    12. Kahn, James A, 1987. "Inventories and the Volatility of Production," American Economic Review, American Economic Association, vol. 77(4), pages 667-679, September.
    13. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    14. Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
    15. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    16. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    17. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    18. Hosoda, Takamichi & Disney, Stephen M., 2006. "On variance amplification in a three-echelon supply chain with minimum mean square error forecasting," Omega, Elsevier, vol. 34(4), pages 344-358, August.
    19. Raghunathan, Srinivasan, 2003. "Impact of demand correlation on the value of and incentives for information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 146(3), pages 634-649, May.
    20. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    21. T C E Cheng & Y N Wu, 2005. "The impact of information sharing in a two-level supply chain with multiple retailers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1159-1165, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
    2. Tliche, Youssef & Taghipour, Atour & Canel-Depitre, Béatrice, 2020. "An improved forecasting approach to reduce inventory levels in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 287(2), pages 511-527.
    3. Meng, Lin & Lv, Wangyong & Yuan, George Xianzhi & Wang, Huiqi, 2023. "The dynamic risk profiles and management strategies in supply chain coopetition under altruistic preference," International Review of Financial Analysis, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    2. Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
    3. M M Ali & J E Boylan, 2011. "Feasibility principles for Downstream Demand Inference in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 474-482, March.
    4. Tliche, Youssef & Taghipour, Atour & Canel-Depitre, Béatrice, 2020. "An improved forecasting approach to reduce inventory levels in decentralized supply chains," European Journal of Operational Research, Elsevier, vol. 287(2), pages 511-527.
    5. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    6. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    7. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    8. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    9. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    10. Lu, Jizhou & Feng, Gengzhong & Shum, Stephen & Lai, Kin Keung, 2021. "On the value of information sharing in the presence of information errors," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1139-1152.
    11. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    12. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    13. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    14. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    15. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.
    16. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.
    17. Ouyang, Yanfeng, 2007. "The effect of information sharing on supply chain stability and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1107-1121, November.
    18. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    19. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    20. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:1:p:65-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.