IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i8p2284-2297.html
   My bibliography  Save this article

Dynamic lot-sizing with rework of defective items and minimum lot-size constraints

Author

Listed:
  • Andreas Goerler
  • Stefan Voß

Abstract

In most production processes, defective items may result from an imperfect production system and the need of reworking them is inevitable in many production environments. Despite the great importance of rework in real-world manufacturing, the body of literature is very limited. This paper deals with the effects of defective items and rework on the Capacitated Lot-Sizing Problem (CLSP). We present a mixed-integer programming formulation of the CLSP with rework of defective items and minimum lot-size constraints on production lots. The formulation describes an imperfect production process that leads to a fraction of defective items that have to be reworked before they can be sold to customers. Detailed numerical experiments show that while the occurrence of defective items significantly increases the computational times, reasonably sized minimum lot-size constraints, besides their practical importance, can be a good strategy to accelerate the solution process.

Suggested Citation

  • Andreas Goerler & Stefan Voß, 2016. "Dynamic lot-sizing with rework of defective items and minimum lot-size constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2284-2297, April.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:8:p:2284-2297
    DOI: 10.1080/00207543.2015.1070970
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2015.1070970
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2015.1070970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, vol. 35(3), pages 353-366, March.
    2. Richter, Knut & Weber, Jens, 2001. "The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 447-456, May.
    3. Teunter, Ruud & Kaparis, Konstantinos & Tang, Ou, 2008. "Multi-product economic lot scheduling problem with separate production lines for manufacturing and remanufacturing," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1241-1253, December.
    4. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    5. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    6. van den Heuvel, W., 2004. "On the complexity of the economic lot-sizing problem with remanufacturing options," Econometric Institute Research Papers EI 2004-46, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Li, Yongjian & Chen, Jian & Cai, Xiaoqiang, 2007. "Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing," International Journal of Production Economics, Elsevier, vol. 105(2), pages 301-317, February.
    8. Richter, Knut & Sombrutzki, Mirko, 2000. "Remanufacturing planning for the reverse Wagner/Whitin models," European Journal of Operational Research, Elsevier, vol. 121(2), pages 304-315, March.
    9. Inderfurth, Karl & Kovalyov, Mikhail Y. & Ng, C.T. & Werner, Frank, 2007. "Cost minimizing scheduling of work and rework processes on a single facility under deterioration of reworkables," International Journal of Production Economics, Elsevier, vol. 105(2), pages 345-356, February.
    10. Teunter, Ruud & Tang, Ou & Kaparis, Konstantinos, 2009. "Heuristics for the economic lot scheduling problem with returns," International Journal of Production Economics, Elsevier, vol. 118(1), pages 323-330, March.
    11. Jian Yang & Boaz Golany & Gang Yu, 2005. "A concave‐cost production planning problem with remanufacturing options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 443-458, August.
    12. Pan, Zhendong & Tang, Jiafu & Liu, Ou, 2009. "Capacitated dynamic lot sizing problems in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(3), pages 810-821, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    2. Felix T.S. Chan & Nan Li & S.H. Chung & Mozafar Saadat, 2017. "Management of sustainable manufacturing systems-a review on mathematical problems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1210-1225, February.
    3. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    4. Piñeyro, Pedro & Viera, Omar, 2010. "The economic lot-sizing problem with remanufacturing and one-way substitution," International Journal of Production Economics, Elsevier, vol. 124(2), pages 482-488, April.
    5. Syed Ali, Sharifah Aishah & Doostmohammadi, Mahdi & Akartunalı, Kerem & van der Meer, Robert, 2018. "A theoretical and computational analysis of lot-sizing in remanufacturing with separate setups," International Journal of Production Economics, Elsevier, vol. 203(C), pages 276-285.
    6. Ahmed Senoussi & Youcef Boutarfa & Nadjib Brahimi & Tarik Aouam, 2024. "Sustainable Hybrid Manufacturing and Refurbishing Systems with Substitution," Sustainability, MDPI, vol. 16(17), pages 1-33, August.
    7. Rowshannahad, Mehdi & Absi, Nabil & Dauzère-Pérès, Stéphane & Cassini, Bernard, 2018. "Multi-item bi-level supply chain planning with multiple remanufacturing of reusable by-products," International Journal of Production Economics, Elsevier, vol. 198(C), pages 25-37.
    8. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    9. Sifaleras, Angelo & Konstantaras, Ioannis & Mladenović, Nenad, 2015. "Variable neighborhood search for the economic lot sizing problem with product returns and recovery," International Journal of Production Economics, Elsevier, vol. 160(C), pages 133-143.
    10. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    11. Gribkovskaia, Irina V. & Kovalev, Sergey & Werner, Frank, 2010. "Batching for work and rework processes on dedicated facilities to minimize the makespan," Omega, Elsevier, vol. 38(6), pages 522-527, December.
    12. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Mathijn Retel Helmrich & Raf Jans & Wilco van den Heuvel & Albert Wagelmans, 2014. "Economic lot-sizing with remanufacturing: complexity and efficient formulations," IISE Transactions, Taylor & Francis Journals, vol. 46(1), pages 67-86.
    14. I. Karakayali & E. Akçalı & S. Çetinkaya & H. Üster, 2013. "Capacitated replenishment and disposal planning for multiple products with resalable returns," Annals of Operations Research, Springer, vol. 203(1), pages 325-350, March.
    15. Konstantaras, I. & Papachristos, S., 2007. "Optimal policy and holding cost stability regions in a periodic review inventory system with manufacturing and remanufacturing options," European Journal of Operational Research, Elsevier, vol. 178(2), pages 433-448, April.
    16. Pan, Zhendong & Tang, Jiafu & Liu, Ou, 2009. "Capacitated dynamic lot sizing problems in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(3), pages 810-821, November.
    17. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    18. Teunter, R.H. & Bayindir, Z.P. & van den Heuvel, W., 2005. "Dynamic lot sizing with product returns," Econometric Institute Research Papers EI 2005-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Guan, Yongpei & Liu, Tieming, 2010. "Stochastic lot-sizing problem with inventory-bounds and constant order-capacities," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1398-1409, December.
    20. Yongjian Li & Xiaoqiang Cai & Lei Xu & Wenxia Yang, 2016. "Heuristic approach on dynamic lot-sizing model for durable products with end-of-use constraints," Annals of Operations Research, Springer, vol. 242(2), pages 265-283, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:8:p:2284-2297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.