IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/6557.html
   My bibliography  Save this paper

Dynamic lot sizing with product returns

Author

Listed:
  • Teunter, R.H.
  • Bayindir, Z.P.
  • van den Heuvel, W.

Abstract

We address the dynamic lot sizing problem for systems with product returns. The demand and return amounts are deterministic over the finite planning horizon. Demands can be satisfied by manufactured/procured new items, but also by remanufactured returned items. The objective is to determine those lot sizes for manufacturing and remanufacturing that minimize the total cost composed of holding cost for returns and serviceable products and set-ups costs. Two different set-up cost schemes are considered; there is either a joint set-up cost for manufacturing and remanufacturing (single production line) or separate set-up costs (dedicated production lines). For the joint set-up cost case, we present an exact, polynomial time dynamic programming algorithm. For both cases, we propose a number of heuristics and test them in an extensive numerical study.

Suggested Citation

  • Teunter, R.H. & Bayindir, Z.P. & van den Heuvel, W., 2005. "Dynamic lot sizing with product returns," Econometric Institute Research Papers EI 2005-17, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:6557
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/6557/EI2005-17.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richter, Knut & Weber, Jens, 2001. "The reverse Wagner/Whitin model with variable manufacturing and remanufacturing cost," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 447-456, May.
    2. van der Laan, Erwin & Salomon, Marc, 1997. "Production planning and inventory control with remanufacturing and disposal," European Journal of Operational Research, Elsevier, vol. 102(2), pages 264-278, October.
    3. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    4. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    5. Teunter, Ruud H. & Vlachos, Dimitrios, 2002. "On the necessity of a disposal option for returned items that can be remanufactured," International Journal of Production Economics, Elsevier, vol. 75(3), pages 257-266, February.
    6. V. Daniel R. Guide & Vaidyanathan Jayaraman & Rajesh Srivastava & W. C. Benton, 2000. "Supply-Chain Management for Recoverable Manufacturing Systems," Interfaces, INFORMS, vol. 30(3), pages 125-142, June.
    7. Richter, Knut & Sombrutzki, Mirko, 2000. "Remanufacturing planning for the reverse Wagner/Whitin models," European Journal of Operational Research, Elsevier, vol. 121(2), pages 304-315, March.
    8. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    9. Teunter, Ruud H. & van der Laan, Erwin & Inderfurth, Karl, 2000. "How to set the holding cost rates in average cost inventory models with reverse logistics?," Omega, Elsevier, vol. 28(4), pages 409-415, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    2. Mathijn Retel Helmrich & Raf Jans & Wilco van den Heuvel & Albert Wagelmans, 2014. "Economic lot-sizing with remanufacturing: complexity and efficient formulations," IISE Transactions, Taylor & Francis Journals, vol. 46(1), pages 67-86.
    3. Kim, Eungab & Saghafian, Soroush & Van Oyen, Mark P., 2013. "Joint control of production, remanufacturing, and disposal activities in a hybrid manufacturing–remanufacturing system," European Journal of Operational Research, Elsevier, vol. 231(2), pages 337-348.
    4. Sifaleras, Angelo & Konstantaras, Ioannis & Mladenović, Nenad, 2015. "Variable neighborhood search for the economic lot sizing problem with product returns and recovery," International Journal of Production Economics, Elsevier, vol. 160(C), pages 133-143.
    5. Atamer, Büşra & Bakal, İsmail S. & Bayındır, Z. Pelin, 2013. "Optimal pricing and production decisions in utilizing reusable containers," International Journal of Production Economics, Elsevier, vol. 143(2), pages 222-232.
    6. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Piñeyro, Pedro & Viera, Omar, 2010. "The economic lot-sizing problem with remanufacturing and one-way substitution," International Journal of Production Economics, Elsevier, vol. 124(2), pages 482-488, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Yang & Boaz Golany & Gang Yu, 2005. "A concave‐cost production planning problem with remanufacturing options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 443-458, August.
    2. Teunter, Ruud H. & Vlachos, Dimitrios, 2002. "On the necessity of a disposal option for returned items that can be remanufactured," International Journal of Production Economics, Elsevier, vol. 75(3), pages 257-266, February.
    3. Konstantaras, I. & Papachristos, S., 2007. "Optimal policy and holding cost stability regions in a periodic review inventory system with manufacturing and remanufacturing options," European Journal of Operational Research, Elsevier, vol. 178(2), pages 433-448, April.
    4. Pan, Zhendong & Tang, Jiafu & Liu, Ou, 2009. "Capacitated dynamic lot sizing problems in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 198(3), pages 810-821, November.
    5. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    6. Sifaleras, Angelo & Konstantaras, Ioannis & Mladenović, Nenad, 2015. "Variable neighborhood search for the economic lot sizing problem with product returns and recovery," International Journal of Production Economics, Elsevier, vol. 160(C), pages 133-143.
    7. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Sebnem Ahiska, S. & King, Russell E., 2010. "Inventory optimization in a one product recoverable manufacturing system," International Journal of Production Economics, Elsevier, vol. 124(1), pages 11-19, March.
    9. Geraldo Ferrer & Jayashankar M. Swaminathan, 2006. "Managing New and Remanufactured Products," Management Science, INFORMS, vol. 52(1), pages 15-26, January.
    10. Timo Hilger & Florian Sahling & Horst Tempelmeier, 2016. "Capacitated dynamic production and remanufacturing planning under demand and return uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 849-876, October.
    11. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    12. Piñeyro, Pedro & Viera, Omar, 2010. "The economic lot-sizing problem with remanufacturing and one-way substitution," International Journal of Production Economics, Elsevier, vol. 124(2), pages 482-488, April.
    13. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    14. Mitra, Subrata, 2009. "Analysis of a two-echelon inventory system with returns," Omega, Elsevier, vol. 37(1), pages 106-115, February.
    15. Vercraene, Samuel & Gayon, Jean-Philippe, 2013. "Optimal control of a production-inventory system with productreturns," International Journal of Production Economics, Elsevier, vol. 142(2), pages 302-310.
    16. Mitra, Subrata, 2007. "Revenue management for remanufactured products," Omega, Elsevier, vol. 35(5), pages 553-562, October.
    17. Kiesmuller, G. P., 2003. "Optimal control of a one product recovery system with leadtimes," International Journal of Production Economics, Elsevier, vol. 81(1), pages 333-340, January.
    18. Hsien-Jen Lin, 2015. "Two-echelon stochastic inventory system with returns and partial backlogging," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 966-975, April.
    19. Li, Yongjian & Chen, Jian & Cai, Xiaoqiang, 2007. "Heuristic genetic algorithm for capacitated production planning problems with batch processing and remanufacturing," International Journal of Production Economics, Elsevier, vol. 105(2), pages 301-317, February.
    20. Guan, Yongpei & Liu, Tieming, 2010. "Stochastic lot-sizing problem with inventory-bounds and constant order-capacities," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1398-1409, December.

    More about this item

    Keywords

    inventory management; reverse logistics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:6557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.