IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v6y2006i2p241-246.html
   My bibliography  Save this article

Carbon dioxide capture and storage: a status report

Author

Listed:
  • Lenny Bernstein
  • Arthur Lee
  • Steven Crookshank

Abstract

Fossil fuel combustion is the largest source of anthropogenic greenhouse gas (GHG) emissions. As a result of combustion, essentially all of the fuel carbon is emitted to the atmosphere as carbon dioxide (CO 2 ), along with small amounts of methane and, in some cases, nitrous oxide. It has been axiomatic that reducing anthropogenic GHG emissions requires reducing fossil-fuel use. However, that relationship may no longer be as highly coupled in the future. There is an emerging understanding that CO 2 capture and storage (CCS) technology offers a way of using fossil fuels while reducing CO 2 emissions by 85% or more. While CCS is not the 'silver bullet' that in and of itself will solve the climate change problem, it is a powerful addition to the portfolio of technologies that will be needed to address climate change. The goal of this Commentary is to describe CCS technology in simple terms: how it might be used, how it might fit into longer term mitigation strategies, and finally, the policy issues that its emergence creates. All of these topics are discussed in much greater detail in the recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (SRCCS) (IPCC, 2005).

Suggested Citation

  • Lenny Bernstein & Arthur Lee & Steven Crookshank, 2006. "Carbon dioxide capture and storage: a status report," Climate Policy, Taylor & Francis Journals, vol. 6(2), pages 241-246, March.
  • Handle: RePEc:taf:tcpoxx:v:6:y:2006:i:2:p:241-246
    DOI: 10.1080/14693062.2006.9685598
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2006.9685598
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2006.9685598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ottmar Edenhofer & Kai Lessmann & Claudia Kemfert & Michael Grubb & Jonathan Köhler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the innovation Modeling Comparison Project," The Energy Journal, , vol. 27(1_suppl), pages 57-108, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oksana Seroka-Stolka, 2023. "Enhancing Environmental Sustainability: Stakeholder Pressure and Corporate CO 2 -Related Performance—An Examination of the Mediating and Moderating Effects of Corporate Decarbonization Strategies," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    2. Renner, Marie, 2014. "Carbon prices and CCS investment: A comparative study between the European Union and China," Energy Policy, Elsevier, vol. 75(C), pages 327-340.
    3. Erans, María & Jeremias, Michal & Zheng, Liya & Yao, Joseph G. & Blamey, John & Manovic, Vasilije & Fennell, Paul S. & Anthony, Edward J., 2018. "Pilot testing of enhanced sorbents for calcium looping with cement production," Applied Energy, Elsevier, vol. 225(C), pages 392-401.
    4. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francois Gusdorf & Stéphane Hallegatte & Alain Lahellec, 2007. "Time and space matter: how urban transitions create inequality," CIRED Working Papers hal-00522404, HAL.
    2. Husain, Shaiara & Sohag, Kazi & Wu, Yanrui, 2022. "The response of green energy and technology investment to climate policy uncertainty: An application of twin transitions strategy," Technology in Society, Elsevier, vol. 71(C).
    3. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    5. Weber, Thomas A. & Neuhoff, Karsten, 2010. "Carbon markets and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 115-132, September.
    6. Santiago Moreno-Bromberg & Luca Taschini, 2011. "Pollution permits, Strategic Trading and Dynamic Technology Adoption," Papers 1103.2914, arXiv.org.
    7. Kemp-Benedict, Eric, 2014. "Shifting to a Green Economy: Lock-in, Path Dependence, and Policy Options," MPRA Paper 60175, University Library of Munich, Germany.
    8. Gregory F. Nemet, 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Working Papers 2006.143, Fondazione Eni Enrico Mattei.
    9. Dr. Christian Lutz & Dr. Markus Flaute & Dr. Ulrike Lehr & Dr. Kirsten Svenja Wiebe, 2015. "Economic impacts of renewable power generation technologies and the role of endogenous technological change," GWS Discussion Paper Series 15-9, GWS - Institute of Economic Structures Research.
    10. Semmler, Willi & Di Bartolomeo, Giovanni & Minooei Fard, Behnaz & Braga, Joao Paulo, 2022. "Limit pricing and entry game of renewable energy firms into the energy sector," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 179-190.
    11. Enrica De Cian & Fabio Sferra & Massimo Tavoni, 2013. "The Influence of Economic Growth, Population, and Fossil Fuel Scarcity on Energy Investments," Working Papers 2013.59, Fondazione Eni Enrico Mattei.
    12. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    13. Gusdorf, Francois & Hallegatte, Stephane, 2007. "Behaviors and housing inertia are key factors in determining the consequences of a shock in transportation costs," Energy Policy, Elsevier, vol. 35(6), pages 3483-3495, June.
    14. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    15. Bosetti, Valentina & Carraro, Carlo & Galeotti, Marzio, 2006. "Stabilisation Targets, Technical Change and the Macroeconomic Costs of Climate Change Control," Climate Change Modelling and Policy Working Papers 12050, Fondazione Eni Enrico Mattei (FEEM).
    16. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    17. Céline Guivarch & Renaud Crassous & Olivier Sassi & Stéphane Hallegatte, 2009. "The costs of climate policies in a second best world with labour market," CIRED Working Papers hal-00866429, HAL.
    18. Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
    19. Greiner, Alfred & Gruene, Lars & Semmler, Willi, 2014. "Economic growth and the transition from non-renewable to renewable energy," Environment and Development Economics, Cambridge University Press, vol. 19(4), pages 417-439, August.
    20. Rick Baker & Andrew Barker & Alan Johnston & Michael Kohlhaas, 2008. "The Stern Review: an assessment of its methodology," Staff Working Papers 0801, Productivity Commission, Government of Australia.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:6:y:2006:i:2:p:241-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.