IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0803.2169.html
   My bibliography  Save this paper

No-Free-Lunch equivalences for exponential Levy models

Author

Listed:
  • Constantinos Kardaras

Abstract

We provide equivalence of numerous no-free-lunch type conditions for financial markets where the asset prices are modeled as exponential Levy processes, under possible convex constraints in the use of investment strategies. The general message is the following: if any kind of free lunch exists in these models it has to be of the most egregious type, generating an increasing ealth. Furthermore, we connect the previous to the existence of the numeraire portfolio, both for its particular expositional clarity in exponential Levy models and as a first step in obtaining analogues of the no-free-lunch equivalences in general semimartingale models.

Suggested Citation

  • Constantinos Kardaras, 2008. "No-Free-Lunch equivalences for exponential Levy models," Papers 0803.2169, arXiv.org.
  • Handle: RePEc:arx:papers:0803.2169
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0803.2169
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk Becherer, 2001. "The numeraire portfolio for unbounded semimartingales," Finance and Stochastics, Springer, vol. 5(3), pages 327-341.
    2. Lucien Foldes, 1991. "Optimal Sure Portfolio Plans," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 15-55, April.
    3. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    4. Esche, Felix & Schweizer, Martin, 2005. "Minimal entropy preserves the Lévy property: how and why," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 299-327, February.
    5. Ernst Eberlein & Jean Jacod, 1997. "On the range of options prices (*)," Finance and Stochastics, Springer, vol. 1(2), pages 131-140.
    6. Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
    7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    2. Küchler Uwe & Tappe Stefan, 2009. "Option pricing in bilateral Gamma stock models," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 281-307, December.
    3. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2015. "An equilibrium model for spot and forward prices of commodities," Papers 1502.00674, arXiv.org, revised Jan 2017.
    4. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    5. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    6. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2018. "An Equilibrium Model for Spot and Forward Prices of Commodities," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 152-180, February.
    7. Antonis Papapantoleon, 2008. "An introduction to L\'{e}vy processes with applications in finance," Papers 0804.0482, arXiv.org, revised Nov 2008.
    8. Uwe Kuchler & Stefan Tappe, 2019. "Option pricing in bilateral Gamma stock models," Papers 1907.09862, arXiv.org.
    9. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    10. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    11. Jos� Fajardo & Ernesto Mordecki, 2014. "Skewness premium with L�vy processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1619-1626, September.
    12. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    13. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    14. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    15. Uwe Kuchler & Stefan Tappe, 2019. "Bilateral Gamma distributions and processes in financial mathematics," Papers 1907.09857, arXiv.org.
    16. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    17. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    18. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    19. Li, Minqiang, 2008. "Price Deviations of S&P 500 Index Options from the Black-Scholes Formula Follow a Simple Pattern," MPRA Paper 11530, University Library of Munich, Germany.
    20. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0803.2169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.