IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v5y2005i3p289-302.html
   My bibliography  Save this article

Pricing inflation-indexed derivatives

Author

Listed:
  • Fabio Mercurio

Abstract

In this article, we start by briefly reviewing the approach proposed by Jarrow and Yildirim for modelling inflation and nominal rates in a consistent way. Their methodology is applied to the pricing of general inflation-indexed swaps and options. We then introduce two different market model approaches to price inflation swaps, caps and floors. Analytical formulae are explicitly derived. Finally, an example of calibration to swap market data is considered.

Suggested Citation

  • Fabio Mercurio, 2005. "Pricing inflation-indexed derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 289-302.
  • Handle: RePEc:taf:quantf:v:5:y:2005:i:3:p:289-302
    DOI: 10.1080/14697680500148851
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500148851
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680500148851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    3. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    4. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    5. Bruce Choy & Tim Dun & Erik Schlögl, 2003. "Correlating Market Models," Research Paper Series 105, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    7. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    8. L. C. G. Rogers, 1997. "The Potential Approach to the Term Structure of Interest Rates and Foreign Exchange Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 157-176, April.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Nabyl Belgrade & Eric Benhamou & Etienne Koehler, 2004. "A market model for inflation," Cahiers de la Maison des Sciences Economiques b04050, Université Panthéon-Sorbonne (Paris 1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hinnerich, Mia, 2008. "Inflation-indexed swaps and swaptions," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2293-2306, November.
    2. Consiglio, Andrea & Zenios, Stavros A., 2015. "The Case for Contingent Convertible Debt for Sovereignst," Working Papers 15-13, University of Pennsylvania, Wharton School, Weiss Center.
    3. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    4. Orcan Ogetbil & Bernhard Hientzsch, 2024. "Inflation Models with Correlation and Skew," Papers 2405.05101, arXiv.org.
    5. M. Martin Boyer & Lars Stentoft, 2017. "Yes We Can (Price Derivatives on Survivor Indices)," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(1), pages 37-62, March.
    6. Gimeno, Ricardo & Ibáñez, Alfredo, 2018. "The eurozone (expected) inflation: An option's eyes view," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 70-92.
    7. Robert Jarrow & Philip Protter, 2011. "Foreign currency bubbles," Review of Derivatives Research, Springer, vol. 14(1), pages 67-83, April.
    8. Henrik Dam & Andrea Macrina & David Skovmand & David Sloth, 2018. "Rational Models for Inflation-Linked Derivatives," Papers 1801.08804, arXiv.org, revised Jul 2020.
    9. Andrea Macrina & Priyanka A. Parbhoo, 2010. "Security Pricing with Information-Sensitive Discounting," Papers 1001.3570, arXiv.org, revised Jun 2010.
    10. Andrea Macrina & Priyanka A. Parbhoo, 2010. "Securities Pricing with Information-Sensitive Discounting," KIER Working Papers 695, Kyoto University, Institute of Economic Research.
    11. Stefan Waldenberger, 2015. "The affine inflation market models," Papers 1503.04979, arXiv.org.
    12. Ho, Hsiao-Wei & Huang, Henry H. & Yildirim, Yildiray, 2014. "Affine model of inflation-indexed derivatives and inflation risk premium," European Journal of Operational Research, Elsevier, vol. 235(1), pages 159-169.
    13. Tiong, Serena, 2013. "Pricing inflation-linked variable annuities under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 77-86.
    14. Marc Henrard, 2005. "Inflation bond option pricing in Jarrow-Yildirim model," Finance 0510027, University Library of Munich, Germany.
    15. F. Antonacci & C. Costantini & F. D'Ippoliti & M. Papi, 2020. "Inflation, ECB and short-term interest rates: A new model, with calibration to market data," Papers 2010.05462, arXiv.org.
    16. John Crosby, 2008. "Pricing a class of exotic commodity options in a multi-factor jump-diffusion model," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 471-483.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    2. K. F. Pilz & E. Schlögl, 2013. "A hybrid commodity and interest rate market model," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 543-560, March.
    3. Erik Schlögl, 2001. "Arbitrage-Free Interpolation in Models of Market Observable Interest Rates," Research Paper Series 71, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    6. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    7. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    8. Erik Schlögl, 2002. "Extracting the Joint Volatility Structure of Foreign Exchange and Interest Rates from Option Prices," Research Paper Series 79, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 31, July-Dece.
    10. Lotz, Christopher & Schlogl, Lutz, 2000. "Default risk in a market model," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 301-327, January.
    11. Henrik Dam & Andrea Macrina & David Skovmand & David Sloth, 2018. "Rational Models for Inflation-Linked Derivatives," Papers 1801.08804, arXiv.org, revised Jul 2020.
    12. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    13. Da Fonseca, José & Gnoatto, Alessandro & Grasselli, Martino, 2013. "A flexible matrix Libor model with smiles," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 774-793.
    14. Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Lixin Wu, 2013. "Inflation-rate Derivatives: From Market Model to Foreign Currency Analogy," Papers 1302.0574, arXiv.org.
    16. Anatoliy Swishchuk & Maksym Tertychnyi & Robert Elliott, 2014. "Pricing Currency Derivatives with Markov-modulated Levy Dynamics," Papers 1402.1953, arXiv.org.
    17. Ernst Eberlein & Fehmi Özkan, 2005. "The Lévy LIBOR model," Finance and Stochastics, Springer, vol. 9(3), pages 327-348, July.
    18. Kay Pilz & Erik Schlogl, 2010. "Calibration of Multicurrency LIBOR Market Models," Research Paper Series 286, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Tim Dun & Geoff Barton & Erik Schlögl, 2001. "Simulated Swaption Delta–Hedging In The Lognormal Forward Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 677-709.
    20. Ting‐Pin Wu & Son‐Nan Chen, 2008. "Valuation of floating range notes in a LIBOR market model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 697-710, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:5:y:2005:i:3:p:289-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.