IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/19.html
   My bibliography  Save this paper

Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives

Author

Abstract

The effect of model and parameter misspecification on the effectiveness of Gaussian hedging strategies for derivative financial instrumens is analyzed, showing that Gaussian hedges in the "natural" hedging instruments are particularly robust. This is true for all models that imply Balck/Scholes - type formulas for option prices and hedging strategies. In this paper we focus on the hedging of fixed income derivatives and show how to apply these results both within the framework of Gaussian term structure models as well as the increasingly popular market models where the prices for caplets and swaptions are given by the corresponding Black formulas. By explicitly considering the behaviour of the hedging strategy under misspecification we also derive the El Karoui, Jeanblanc-Picque and Shreve (1995, 1998) and Avellaneda, Levy and Paras (1995) results that a superhedge is obtained in the Black/Scholes model if the misspecified volatility dominates the true volatility. Furthermore, we show that the robustness and superhedging result do not hold if the natural hedging instruments are unavailable. In this case, we study criteria for the optimal choice from the instruments that are available.

Suggested Citation

  • Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:19
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp19.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    4. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    7. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    8. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    11. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    12. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    2. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    3. Tim Dun & Geoff Barton & Erik Schlögl, 2001. "Simulated Swaption Delta–Hedging In The Lognormal Forward Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 677-709.
    4. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    5. repec:bla:germec:v:9:y:2008:i::p:207-231 is not listed on IDEAS
    6. Rasmussen, Nicki Søndergaard, 2002. "Hedging with a Misspecified Model," Finance Working Papers 02-15, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    7. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    8. Simon Ellersgaard & Martin Jönsson & Rolf Poulsen, 2017. "The Fundamental Theorem of Derivative Trading - exposition, extensions and experiments," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 515-529, April.
    9. Nicole Branger & Antje Mahayni, 2011. "Tractable hedging with additional hedge instruments," Review of Derivatives Research, Springer, vol. 14(1), pages 85-114, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    4. repec:dau:papers:123456789/5374 is not listed on IDEAS
    5. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    8. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    11. repec:uts:finphd:40 is not listed on IDEAS
    12. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    15. Mikkelsen, Peter, 2001. "Cross-Currency LIBOR Market Models," Finance Working Papers 01-6, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    16. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    17. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    18. Jui‐Jane Chang & Son‐Nan Chen & Ting‐Pin Wu, 2013. "Currency‐Protected Swaps and Swaptions with Nonzero Spreads in a Multicurrency LMM," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(9), pages 827-867, September.
    19. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    20. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    21. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    22. Karol Gellert & Erik Schlogl, 2021. "Short Rate Dynamics: A Fed Funds and SOFR perspective," Papers 2101.04308, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.