IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.00975.html
   My bibliography  Save this paper

Temporal Attention augmented Bilinear Network for Financial Time-Series Data Analysis

Author

Listed:
  • Dat Thanh Tran
  • Alexandros Iosifidis
  • Juho Kanniainen
  • Moncef Gabbouj

Abstract

Financial time-series forecasting has long been a challenging problem because of the inherently noisy and stochastic nature of the market. In the High-Frequency Trading (HFT), forecasting for trading purposes is even a more challenging task since an automated inference system is required to be both accurate and fast. In this paper, we propose a neural network layer architecture that incorporates the idea of bilinear projection as well as an attention mechanism that enables the layer to detect and focus on crucial temporal information. The resulting network is highly interpretable, given its ability to highlight the importance and contribution of each temporal instance, thus allowing further analysis on the time instances of interest. Our experiments in a large-scale Limit Order Book (LOB) dataset show that a two-hidden-layer network utilizing our proposed layer outperforms by a large margin all existing state-of-the-art results coming from much deeper architectures while requiring far fewer computations.

Suggested Citation

  • Dat Thanh Tran & Alexandros Iosifidis & Juho Kanniainen & Moncef Gabbouj, 2017. "Temporal Attention augmented Bilinear Network for Financial Time-Series Data Analysis," Papers 1712.00975, arXiv.org.
  • Handle: RePEc:arx:papers:1712.00975
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.00975
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
    2. G. E. P. Box & G. M. Jenkins & J. F. MacGregor, 1974. "Some Recent Advances in Forecasting and Control," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(2), pages 158-179, June.
    3. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    4. Abhijit Sharang & Chetan Rao, 2015. "Using machine learning for medium frequency derivative portfolio trading," Papers 1512.06228, arXiv.org.
    5. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    6. Justin Sirignano, 2016. "Deep Learning for Limit Order Books," Papers 1601.01987, arXiv.org, revised Jul 2016.
    7. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ymir Mäkinen & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Forecasting jump arrivals in stock prices: new attention-based network architecture using limit order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(12), pages 2033-2050, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    2. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Mid-price Prediction Based on Machine Learning Methods with Technical and Quantitative Indicators," Papers 1907.09452, arXiv.org.
    3. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    4. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    5. Dat Thanh Tran & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Tensor Representation in High-Frequency Financial Data for Price Change Prediction," Papers 1709.01268, arXiv.org, revised Nov 2017.
    6. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    7. Amit Milstein & Haoran Deng & Guy Revach & Hai Morgenstern & Nir Shlezinger, 2022. "Neural Augmented Kalman Filtering with Bollinger Bands for Pairs Trading," Papers 2210.15448, arXiv.org, revised Sep 2023.
    8. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    9. Ding Du & Ou Hu, 2018. "The sentiment premium and macroeconomic announcements," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 207-237, January.
    10. Li, Yelin & Bu, Hui & Li, Jiahong & Wu, Junjie, 2020. "The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1541-1562.
    11. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    12. Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
    13. Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
    14. Caginalp, Gunduz & DeSantis, Mark, 2020. "Nonlinear price dynamics of S&P 100 stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    15. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2020. "Mid-price prediction based on machine learning methods with technical and quantitative indicators," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-39, June.
    16. Kieran Wood & Stephen Roberts & Stefan Zohren, 2021. "Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection," Papers 2105.13727, arXiv.org, revised Dec 2021.
    17. Adamantios Ntakaris & Giorgio Mirone & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Feature Engineering for Mid-Price Prediction with Deep Learning," Papers 1904.05384, arXiv.org, revised Jun 2019.
    18. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    19. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    20. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.00975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.