IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v16y2016i8p1259-1271.html
   My bibliography  Save this article

On an automatic and optimal importance sampling approach with applications in finance

Author

Listed:
  • Huei-Wen Teng
  • Cheng-Der Fuh
  • Chun-Chieh Chen

Abstract

Calculating high-dimensional integrals efficiently is essential and challenging in many scientific disciplines, such as pricing financial derivatives. This paper proposes an exponentially tilted importance sampling based on the criterion of minimizing the variance of the importance sampling estimators, and its contribution is threefold: (1) A theoretical foundation to guarantee the existence, uniqueness, and characterization of the optimal tilting parameter is built. (2) The optimal tilting parameter can be searched via an automatic Newton’s method. (3) Simplified yet competitive tilting formulas are further proposed to reduce heavy computational cost and numerical instability in high-dimensional cases. Numerical examples in pricing path-dependent derivatives and basket default swaps are provided.

Suggested Citation

  • Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
  • Handle: RePEc:taf:quantf:v:16:y:2016:i:8:p:1259-1271
    DOI: 10.1080/14697688.2015.1136077
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2015.1136077
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2015.1136077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng-Der Fuh, 2004. "Efficient importance sampling for events of moderate deviations with applications," Biometrika, Biometrika Trust, vol. 91(2), pages 471-490, June.
    2. Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
    3. Zhiyong Chen & Paul Glasserman, 2008. "Fast Pricing of Basket Default Swaps," Operations Research, INFORMS, vol. 56(2), pages 286-303, April.
    4. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    5. Mark Joshi & Dherminder Kainth, 2004. "Rapid and accurate development of prices and Greeks for nth to default credit swaps in the Li model," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 266-275.
    6. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    7. Jan Neddermeyer, 2011. "Non-parametric partial importance sampling for financial derivative pricing," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1193-1206.
    8. Luca Capriotti, 2008. "Least-squares Importance Sampling for Monte Carlo security pricing," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 485-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    2. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    3. Çela, Eranda & Hafner, Stephan & Mestel, Roland & Pferschy, Ulrich, 2021. "Mean-variance portfolio optimization based on ordinal information," Journal of Banking & Finance, Elsevier, vol. 122(C).
    4. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng-Der Fuh & Yanwei Jia & Steven Kou, 2023. "A General Framework for Importance Sampling with Latent Markov Processes," Papers 2311.12330, arXiv.org.
    2. Choe, Geon Ho & Jang, Hyun Jin, 2011. "Efficient algorithms for basket default swap pricing with multivariate Archimedean copulas," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 205-213, March.
    3. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    4. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    5. Sak, Halis & Başoğlu, İsmail, 2017. "Efficient randomized quasi-Monte Carlo methods for portfolio market risk," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 87-94.
    6. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    7. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.
    8. Fredrik Åkesson & John P. Lehoczky, 2000. "Path Generation for Quasi-Monte Carlo Simulation of Mortgage-Backed Securities," Management Science, INFORMS, vol. 46(9), pages 1171-1187, September.
    9. Lu, King-Jeng & Liang, Chiung-Ju & Hsieh, Ming-Hua & Lee, Yi-Hsi, 2020. "An effective hybrid variance reduction method for pricing the Asian options and its variants," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Halis Sak & .Ismail Bac{s}ou{g}lu, 2015. "Efficient Randomized Quasi-Monte Carlo Methods For Portfolio Market Risk," Papers 1510.01593, arXiv.org.
    11. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    12. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    13. Huei-Wen Teng & Ming-Hsuan Kang, 2022. "On Accelerating Monte Carlo Integration Using Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1143-1168, June.
    14. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    15. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    16. Bendera, Christian & Moseler, Thilo, 2008. "Importance sampling for backward SDEs," CoFE Discussion Papers 08/11, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    18. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    19. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    20. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    21. Andrea Macrina & Priyanka Parbhoo, 2014. "Randomised Mixture Models for Pricing Kernels," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 281-315, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:16:y:2016:i:8:p:1259-1271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.