IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.12330.html
   My bibliography  Save this paper

A General Framework for Importance Sampling with Latent Markov Processes

Author

Listed:
  • Cheng-Der Fuh
  • Yanwei Jia
  • Steven Kou

Abstract

Although stochastic models driven by latent Markov processes are widely used, the classical importance sampling method based on the exponential tilting method for these models suffers from the difficulty of computing the eigenvalue and associated eigenfunction and the plausibility of the indirect asymptotic large deviation regime for the variance of the estimator. We propose a general importance sampling framework that twists the observable and latent processes separately based on a link function that directly minimizes the estimator's variance. An optimal choice of the link function is chosen within the locally asymptotically normal family. We show the logarithmic efficiency of the proposed estimator under the asymptotic normal regime. As applications, we estimate an overflow probability under a pandemic model and the CoVaR, a measurement of the co-dependent financial systemic risk. Both applications are beyond the scope of traditional importance sampling methods due to their nonlinear structures.

Suggested Citation

  • Cheng-Der Fuh & Yanwei Jia & Steven Kou, 2023. "A General Framework for Importance Sampling with Latent Markov Processes," Papers 2311.12330, arXiv.org.
  • Handle: RePEc:arx:papers:2311.12330
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.12330
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Der Fuh, 2004. "Efficient importance sampling for events of moderate deviations with applications," Biometrika, Biometrika Trust, vol. 91(2), pages 471-490, June.
    2. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    3. Cheng-Der Fuh & Inchi Hu & Ya-Hui Hsu & Ren-Her Wang, 2011. "Efficient Simulation of Value at Risk with Heavy-Tailed Risk Factors," Operations Research, INFORMS, vol. 59(6), pages 1395-1406, December.
    4. Anh Le & Kenneth J. Singleton & Qiang Dai, 2010. "Discrete-Time Affine-super-ℚ Term Structure Models with Generalized Market Prices of Risk," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2184-2227.
    5. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2015. "VAR for VaR: Measuring tail dependence using multivariate regression quantiles," Journal of Econometrics, Elsevier, vol. 187(1), pages 169-188.
    6. Jean-Pierre Fouque & Tracey Andrew Tullie, 2002. "Variance reduction for Monte Carlo simulation in a stochastic volatility environment," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 24-30.
    7. Cleo Anastassopoulou & Lucia Russo & Athanasios Tsakris & Constantinos Siettos, 2020. "Data-based analysis, modelling and forecasting of the COVID-19 outbreak," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
    8. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    9. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    10. Sigrún Andradóttir & Daniel P. Heyman & Teunis J. Ott, 1995. "On the Choice of Alternative Measures in Importance Sampling with Markov Chains," Operations Research, INFORMS, vol. 43(3), pages 509-519, June.
    11. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    12. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    13. Shane G. Henderson & Peter W. Glynn, 2002. "Approximating Martingales for Variance Reduction in Markov Process Simulation," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 253-271, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
    2. Hernan P. Awad & Peter W. Glynn & Reuven Y. Rubinstein, 2013. "Zero-Variance Importance Sampling Estimators for Markov Process Expectations," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 358-388, May.
    3. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    4. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    5. David B. Brown & James E. Smith, 2013. "Optimal Sequential Exploration: Bandits, Clairvoyants, and Wildcats," Operations Research, INFORMS, vol. 61(3), pages 644-665, June.
    6. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    7. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    8. T. P. I. Ahamed & V. S. Borkar & S. Juneja, 2006. "Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation," Operations Research, INFORMS, vol. 54(3), pages 489-504, June.
    9. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    10. Ye, Wuyi & Zhou, Yi & Chen, Pengzhan & Wu, Bin, 2024. "A simulation-based method for estimating systemic risk measures," European Journal of Operational Research, Elsevier, vol. 313(1), pages 312-324.
    11. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    12. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    13. Cheng-Der Fuh & Huei-Wen Teng & Ren-Her Wang, 2018. "Efficient Simulation of Value-at-Risk Under a Jump Diffusion Model: A New Method for Moderate Deviation Events," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 973-990, April.
    14. Fakhouri H. & Nasroallah A., 2009. "On the simulation of Markov chain steady-state distribution using CFTP algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 15(2), pages 91-105, January.
    15. David B. Brown & James E. Smith, 2014. "Information Relaxations, Duality, and Convex Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 62(6), pages 1394-1415, December.
    16. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    17. Hu, Genhua & Wang, Xiangjin & Qiu, Hong, 2023. "Analyzing a dynamic relation between RMB exchange rate onshore and offshore during the extreme market conditions," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 408-417.
    18. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    19. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    20. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.12330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.