IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i2d10.1007_s11009-021-09893-3.html
   My bibliography  Save this article

On Accelerating Monte Carlo Integration Using Orthogonal Projections

Author

Listed:
  • Huei-Wen Teng

    (National Yang Ming Chiao Tung University)

  • Ming-Hsuan Kang

    (National Yang Ming Chiao Tung University)

Abstract

Monte Carlo simulation is an indispensable tool in calculating high-dimensional integrals. Although Monte Carlo integration is notoriously known for its slow convergence, it could be improved by various variance reduction techniques. This paper applies orthogonal projections to study the amount of variance reduction, and also proposes a novel projection estimator that is associated with a group of symmetries of the probability measure. For a given space of functions, the average variance reduction can be derived. For a specific function, its variance reduction is also analyzed. The well-known antithetic estimator is a special case of the projection estimator, and new results of its variance reduction and efficiency are provided. Various illustrations including pricing financial Asian options are provided to confirm our claims.

Suggested Citation

  • Huei-Wen Teng & Ming-Hsuan Kang, 2022. "On Accelerating Monte Carlo Integration Using Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1143-1168, June.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09893-3
    DOI: 10.1007/s11009-021-09893-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-021-09893-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-021-09893-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    2. Jong Jun Park & Geon Ho Choe, 2016. "A new variance reduction method for option pricing based on sampling the vertices of a simplex," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1165-1173, August.
    3. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    4. Jan Neddermeyer, 2011. "Non-parametric partial importance sampling for financial derivative pricing," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1193-1206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huei-Wen Teng & Cheng-Der Fuh & Chun-Chieh Chen, 2016. "On an automatic and optimal importance sampling approach with applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1259-1271, August.
    2. Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
    3. Paul Glasserman & Jeremy Staum, 2001. "Conditioning on One-Step Survival for Barrier Option Simulations," Operations Research, INFORMS, vol. 49(6), pages 923-937, December.
    4. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    5. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    6. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    7. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    8. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.
    9. Monfort, Alain & Pegoraro, Fulvio, 2012. "Asset pricing with Second-Order Esscher Transforms," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1678-1687.
    10. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    11. Xingzhi Yao & Marwan Izzeldin, 2018. "Forecasting using alternative measures of model‐free option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 199-218, February.
    12. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    13. Zhushun Yuan & Gemai Chen, 2009. "Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions," Management Science, INFORMS, vol. 55(8), pages 1438-1450, August.
    14. Reiichiro Kawai, 2008. "Adaptive Monte Carlo Variance Reduction for Lévy Processes with Two-Time-Scale Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 199-223, June.
    15. Li, Zhenxiong & Yao, Xingzhi & Izzeldin, Marwan, 2023. "On the right jump tail inferred from the VIX market," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Hejin Wang & Zhan Zheng, 2024. "Randomly Shifted Lattice Rules with Importance Sampling and Applications," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
    17. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    18. Wolff, Christian & Bams, Dennis & Lehnert, Thorsten, 2005. "Loss Functions in Option Valuation: A Framework for Model Selection," CEPR Discussion Papers 4960, C.E.P.R. Discussion Papers.
    19. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    20. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:2:d:10.1007_s11009-021-09893-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.