IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.0697.html
   My bibliography  Save this paper

A lattice framework for pricing display advertisement options with the stochastic volatility underlying model

Author

Listed:
  • Bowei Chen
  • Jun Wang

Abstract

Advertisement (abbreviated ad) options are a recent development in online advertising. Simply, an ad option is a first look contract in which a publisher or search engine grants an advertiser a right but not obligation to enter into transactions to purchase impressions or clicks from a specific ad slot at a pre-specified price on a specific delivery date. Such a structure provides advertisers with more flexibility of their guaranteed deliveries. The valuation of ad options is an important topic and previous studies on ad options pricing have been mostly restricted to the situations where the underlying prices follow a geometric Brownian motion (GBM). This assumption is reasonable for sponsored search; however, some studies have also indicated that it is not valid for display advertising. In this paper, we address this issue by employing a stochastic volatility (SV) model and discuss a lattice framework to approximate the proposed SV model in option pricing. Our developments are validated by experiments with real advertising data: (i) we find that the SV model has a better fitness over the GBM model; (ii) we validate the proposed lattice model via two sequential Monte Carlo simulation methods; (iii) we demonstrate that advertisers are able to flexibly manage their guaranteed deliveries by using the proposed options, and publishers can have an increased revenue when some of their inventories are sold via ad options.

Suggested Citation

  • Bowei Chen & Jun Wang, 2014. "A lattice framework for pricing display advertisement options with the stochastic volatility underlying model," Papers 1409.0697, arXiv.org, revised Dec 2015.
  • Handle: RePEc:arx:papers:1409.0697
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.0697
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    5. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    6. Chi-Cheng Hsia, 1983. "On Binomial Option Pricing," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(1), pages 41-46, March.
    7. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    8. Ionuţ Florescu & Frederi Viens, 2008. "Stochastic Volatility: Option Pricing using a Multinomial Recombining Tree," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 151-181.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    11. Varian, Hal R, 1987. "The Arbitrage Principle in Financial Economics," Journal of Economic Perspectives, American Economic Association, vol. 1(2), pages 55-72, Fall.
    12. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    13. James Primbs & Muruhan Rathinam & Yuji Yamada, 2007. "Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    2. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.
    4. Chuang-Chang Chang & Jun-Biao Lin & Chun-Chieh Yang, 2015. "The effect of stochastic interest rates on a firm’s capital structure under a generalized model," Review of Quantitative Finance and Accounting, Springer, vol. 45(4), pages 695-719, November.
    5. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    6. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    7. Jimmy E. Hilliard, 2014. "Robust binomial lattices for univariate and multivariate applications: choosing probabilities to match local densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 101-110, January.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Paolo Angelis & Roberto Marchis & Antonio L. Martire & Emilio Russo, 2022. "A flexible lattice framework for valuing options on assets paying discrete dividends and variable annuities embedding GMWB riders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 415-446, June.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    12. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    13. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    14. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    15. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    16. Cocozza, Rosa & De Simone, Antonio, 2011. "One numerical procedure for two risk factors modeling," MPRA Paper 30859, University Library of Munich, Germany.
    17. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    18. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    19. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    20. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.0697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.