IDEAS home Printed from https://ideas.repec.org/a/taf/nmcmxx/v19y2013i4p388-400.html
   My bibliography  Save this article

Multi-agent system model with mixed coupling topologies for pattern formation and formation splitting

Author

Listed:
  • Zhifu Chen
  • Tianguang Chu

Abstract

In this article, a new type of multi-agent system model with mixed coupling topologies is proposed for realizing pattern formations with specific geometric shapes and formation splitting. The interactions among individual agents are assumed to be universally repulsive and selectively attractive. By designing the form of attractive coupling matrix, one can obtain a variety of formations with specific shapes in the system through self-assembly of agents. Both symmetric coupling case and asymmetric coupling case are considered. Analysis and simulation results show symmetric ones result in convergent dynamics to steady-state formations, whereas, for asymmetric case, the system exhibits complex dynamic behaviours, including collective rotation and chaotic motion. By breaking the graph defined by attractive couplings into disjoint subgraphs, one can make the formation of agents to split into small sizes. The results are relevant for the design of coordination and cooperative control for multi-agent systems.

Suggested Citation

  • Zhifu Chen & Tianguang Chu, 2013. "Multi-agent system model with mixed coupling topologies for pattern formation and formation splitting," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(4), pages 388-400.
  • Handle: RePEc:taf:nmcmxx:v:19:y:2013:i:4:p:388-400
    DOI: 10.1080/13873954.2012.750614
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13873954.2012.750614
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13873954.2012.750614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    2. Chu, Tianguang & Wang, Long & Chen, Tongwen & Mu, Shumei, 2006. "Complex emergent dynamics of anisotropic swarms: Convergence vs oscillation," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 875-885.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    3. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    4. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    5. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    6. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    7. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    9. De Rosis, Alessandro, 2014. "Hydrodynamic effects on a predator approaching a group of preys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 329-339.
    10. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    11. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    12. Kong, Decheng & Xue, Kai & Wang, Ping, 2024. "Collective queuing motion of self-propelled particles with leadership and experience," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    13. Huepe, Cristián & Aldana, Maximino, 2008. "New tools for characterizing swarming systems: A comparison of minimal models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2809-2822.
    14. Federico Pratissoli & Andreagiovanni Reina & Yuri Kaszubowski Lopes & Carlo Pinciroli & Genki Miyauchi & Lorenzo Sabattini & Roderich Groß, 2023. "Coherent movement of error-prone individuals through mechanical coupling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Kim, Jong-Ho & Park, Jea-Hyun, 2022. "Clustering phenomenon of the singular Cucker–Smale model with finite communication weight and variable coupling strength," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Mayuko Nakamaru & Akira Yokoyama, 2014. "The Effect of Ostracism and Optional Participation on the Evolution of Cooperation in the Voluntary Public Goods Game," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-9, September.
    18. Eshel, Ilan & Sansone, Emilia & Shaked, Avner, 2011. "On the evolution of group-escape strategies of selfish prey," Theoretical Population Biology, Elsevier, vol. 80(2), pages 150-157.
    19. Xu, Bei & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-an & Fang, Yining, 2022. "A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Wu, Juntao & Wang, Xiao & Liu, Yicheng, 2024. "Asymptotic analysis of the linear formation model with an undirected connected topology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1039-1055.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:nmcmxx:v:19:y:2013:i:4:p:388-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/NMCM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.