IDEAS home Printed from https://ideas.repec.org/a/taf/mpopst/v21y2014i4p205-219.html
   My bibliography  Save this article

Travelers' Day-to-Day Route Choice Behavior with Real-Time Information in a Congested Risky Network

Author

Listed:
  • XUAN LU
  • SONG GAO
  • ERAN BEN-ELIA
  • RYAN POTHERING

Abstract

Nonrecurring disruptions to traffic systems caused by incidents or adverse conditions can result in uncertain travel times. Real-time information allows travelers to adapt to actual traffic conditions. In a behavior experiment, subjects completed 120 "days" of repeated route choices in a hypothetical, competitive network submitted to random capacity reductions. One scenario provided subjects with real-time information regarding a probable incident and the other did not. A reinforcement learning model with two scale factors, a discounting rate of previous experience and a constant term, is estimated by minimizing the deviation between predicted and observed daily flows. The estimation combines brute force enumeration and a subsequent stochastic approximation method. The prediction over 120 runs has a root mean square error of 1.05 per day per route and a bias of 0.14 per route.

Suggested Citation

  • Xuan Lu & Song Gao & Eran Ben-Elia & Ryan Pothering, 2014. "Travelers' Day-to-Day Route Choice Behavior with Real-Time Information in a Congested Risky Network," Mathematical Population Studies, Taylor & Francis Journals, vol. 21(4), pages 205-219, December.
  • Handle: RePEc:taf:mpopst:v:21:y:2014:i:4:p:205-219
    DOI: 10.1080/08898480.2013.836418
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/08898480.2013.836418
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/08898480.2013.836418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    2. Selten, R. & Chmura, T. & Pitz, T. & Kube, S. & Schreckenberg, M., 2007. "Commuters route choice behaviour," Games and Economic Behavior, Elsevier, vol. 58(2), pages 394-406, February.
    3. Erel Avineri & Joseph Prashker, 2006. "The Impact of Travel Time Information on Travelers’ Learning under Uncertainty," Transportation, Springer, vol. 33(4), pages 393-408, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guevara, C. Angelo & Tang, Yue & Gao, Song, 2018. "The initial condition problem with complete history dependency in learning models for travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 850-861.
    2. Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    3. Rapoport, Amnon & Qi, Hang & Mak, Vincent & Gisches, Eyran J., 2019. "When a few undermine the whole: A class of social dilemmas in ridesharing," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 125-137.
    4. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
    5. Collins, Mor & Etzioni, Shelly & Ben-Elia, Eran, 2024. "Travel behavior and system dynamics in a simple gamified automated multimodal network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    6. Jiang, Gege & Fosgerau, Mogens & Lo, Hong K., 2020. "Route choice, travel time variability, and rational inattention," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 188-207.
    7. Tang, Yue & Gao, Song & Ben-Elia, Eran, 2017. "An exploratory study of instance-based learning for route choice with random travel times," Journal of choice modelling, Elsevier, vol. 24(C), pages 22-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    2. Rapoport, Amnon & Gisches, Eyran J. & Daniel, Terry & Lindsey, Robin, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Experiment," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 154-172.
    3. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.
    4. Carina Goldbach & Christin Hoffmann & Julia Hoppe & Thomas Pitz & Kirsten Thommes, 2020. "The fast and the furious—An experimental investigation of the pace of life and risky speed choice in traffic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-20, July.
    5. Kemel, Emmanuel & Paraschiv, Corina, 2013. "Prospect Theory for joint time and money consequences in risk and ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 81-95.
    6. Innocenti, Alessandro & Lattarulo, Patrizia & Pazienza, Maria Grazia, 2013. "Car stickiness: Heuristics and biases in travel choice," Transport Policy, Elsevier, vol. 25(C), pages 158-168.
    7. Zhang, Qianran & Ma, Shoufeng & Tian, Junfang & Rose, John M. & Jia, Ning, 2022. "Mode choice between autonomous vehicles and manually-driven vehicles: An experimental study of information and reward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 24-39.
    8. Morgan, John & Orzen, Henrik & Sefton, Martin, 2009. "Network architecture and traffic flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Games and Economic Behavior, Elsevier, vol. 66(1), pages 348-372, May.
    9. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    10. Guo, Zhan, 2011. "Mind the map! The impact of transit maps on path choice in public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 625-639, August.
    11. Ben-Elia, Eran & Ettema, Dick, 2011. "Rewarding rush-hour avoidance: A study of commuters' travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 567-582, August.
    12. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    13. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    14. Antonio J. Morales & Javier Rodero-Cosano, 2023. "Forward induction and market entry with an endogenous outside option," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 61(2), pages 365-383, August.
    15. Alan Kirman & François Laisney & Paul Pezanis-Christou, 2023. "Relaxing the symmetry assumption in participation games: a specification test for cluster-heterogeneity," Experimental Economics, Springer;Economic Science Association, vol. 26(4), pages 850-878, September.
    16. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    17. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    18. Jou, Rong-Chang & Chen, Ke-Hong, 2013. "An application of cumulative prospect theory to freeway drivers’ route choice behaviours," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 123-131.
    19. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    20. Tanjim Hossain & Dylan Minor & John Morgan, 2011. "Competing Matchmakers: An Experimental Analysis," Management Science, INFORMS, vol. 57(11), pages 1913-1925, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:21:y:2014:i:4:p:205-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GMPS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.