IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v50y2023i1p19-41.html
   My bibliography  Save this article

Predicting maritime accident consequence scenarios for emergency response decisions using optimization-based decision tree approach

Author

Listed:
  • Baode Li
  • Jing Lu
  • Han Lu
  • Jing Li

Abstract

Emergency response decision-making for maritime accidents needs to consider the possible consequences and scenarios of an accident to develop an effective emergency response strategy to reduce the severity of the accident. This paper proposes a novel machine learning-based methodology for predicting accident scenarios and analysing its factors to assist emergency response decision-making from an emergency rescue perspective. Specifically, the accident data used are collected from maritime accident investigation reports, and then two types of decision tree (DT) algorithms, classification and regression tree (CART) and random forest (RF), are used to develop scenario prediction models for three accident consequences including ship damage, casualty, and environmental damage. The hyper-parameters of these two DT algorithms are optimized using two state-of-the-art optimization algorithms, namely random search (RS) and Bayesian optimization (BO), respectively, aiming to obtain the prediction model with the highest accuracy. Experimental results reveal that BO-RF algorithm produces the best accuracy as compared to others. In addition, an analysis of feature importance shows that the number of people involved in an accident is the most important driving factor affecting the final accident scenario. Finally, decision rules are generated from the obtained optimal prediction model, which can provide decision support for emergency response decisions.

Suggested Citation

  • Baode Li & Jing Lu & Han Lu & Jing Li, 2023. "Predicting maritime accident consequence scenarios for emergency response decisions using optimization-based decision tree approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 50(1), pages 19-41, January.
  • Handle: RePEc:taf:marpmg:v:50:y:2023:i:1:p:19-41
    DOI: 10.1080/03088839.2021.1959074
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2021.1959074
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2021.1959074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Zhou & Fang Wang & Weili Hu & Manel Grifoll & Jiao Liu & Weijie Du & Pengjun Zheng, 2024. "A Novel Framework for Identifying Major Fishing Vessel Accidents and Their Key Influencing Factors," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    2. Ejder, Emir & Dinçer, Samet & Arslanoglu, Yasin, 2024. "Decarbonization strategies in the maritime industry: An analysis of dual-fuel engine performance and the carbon intensity indicator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:50:y:2023:i:1:p:19-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.