IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i3p457-470.html
   My bibliography  Save this article

Permutation Tests for Comparing Inequality Measures

Author

Listed:
  • Jean-Marie Dufour
  • Emmanuel Flachaire
  • Lynda Khalaf

Abstract

Asymptotic and bootstrap tests for inequality measures are known to perform poorly in finite samples when the underlying distribution is heavy-tailed. We propose Monte Carlo permutation and bootstrap methods for the problem of testing the equality of inequality measures between two samples. Results cover the Generalized Entropy class, which includes Theil’s index, the Atkinson class of indices, and the Gini index. We analyze finite-sample and asymptotic conditions for the validity of the proposed methods, and we introduce a convenient rescaling to improve finite-sample performance. Simulation results show that size correct inference can be obtained with our proposed methods despite heavy tails if the underlying distributions are sufficiently close in the upper tails. Substantial reduction in size distortion is achieved more generally. Studentized rescaled Monte Carlo permutation tests outperform the competing methods we consider in terms of power.

Suggested Citation

  • Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf, 2019. "Permutation Tests for Comparing Inequality Measures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 457-470, July.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:457-470
    DOI: 10.1080/07350015.2017.1371027
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1371027
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1371027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Russell Davidson, 2012. "Statistical inference in the presence of heavy tails," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 31-53, February.
    2. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    3. Aaberge, Rolf & Mogstad, Magne & Peragine, Vito, 2011. "Measuring long-term inequality of opportunity," Journal of Public Economics, Elsevier, vol. 95(3), pages 193-204.
    4. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    5. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    6. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    7. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    8. Cowell, Frank, 2011. "Measuring Inequality," OUP Catalogue, Oxford University Press, edition 3, number 9780199594047.
    9. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    10. Zheng, Buhong & J. Cushing, Brian, 2001. "Statistical inference for testing inequality indices with dependent samples," Journal of Econometrics, Elsevier, vol. 101(2), pages 315-335, April.
    11. Lim, Tjen-Sien & Loh, Wei-Yin, 1996. "A comparison of tests of equality of variances," Computational Statistics & Data Analysis, Elsevier, vol. 22(3), pages 287-301, July.
    12. Bhattacharya, Debopam, 2007. "Inference on inequality from household survey data," Journal of Econometrics, Elsevier, vol. 137(2), pages 674-707, April.
    13. Schluter, Christian & Trede, Mark, 2002. "Tails of Lorenz curves," Journal of Econometrics, Elsevier, vol. 109(1), pages 151-166, July.
    14. Frank A. Cowell, 2008. "Income Distribution and Inequality," Chapters, in: John B. Davis & Wilfred Dolfsma (ed.), The Elgar Companion to Social Economics, chapter 13, Edward Elgar Publishing.
    15. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
    16. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    2. Meng Yuan & Chunlin Wang & Boxi Lin & Pengfei Li, 2022. "Semiparametric inference on general functionals of two semicontinuous populations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 451-472, June.
    3. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    4. Johannes Marzian & Julian Laabs & Johannes Müller & Tilman Requate, 2024. "Inequality in relational wealth within the upper societal segment: evidence from prehistoric Central Europe," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    5. Rustam Ibragimov & Paul Kattuman & Anton Skrobotov, 2021. "Robust Inference on Income Inequality: $t$-Statistic Based Approaches," Papers 2105.05335, arXiv.org, revised Nov 2021.
    6. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf & Abdallah Zalghout, 2020. "Identification-Robust Inequality Analysis," Cahiers de recherche 03-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Frank Cowell & Emmanuel Flachaire, 2021. "Inequality Measurement: Methods and Data," Post-Print hal-03589066, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank A. Cowell & Emmanuel Flachaire, 2014. "Statistical Methods for Distributional Analysis," Working Papers halshs-01115996, HAL.
    2. Stéphane Guerrier & Samuel Orso & Maria-Pia Victoria-Feser, 2018. "Parametric Inference for Index Functionals," Econometrics, MDPI, vol. 6(2), pages 1-11, April.
    3. Frank Cowell & Emmanuel Flachaire & Sanghamitra Bandyopadhyay, 2013. "Reference distributions and inequality measurement," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(4), pages 421-437, December.
    4. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    5. Brzezinski, Michal, 2013. "Asymptotic and bootstrap inference for top income shares," Economics Letters, Elsevier, vol. 120(1), pages 10-13.
    6. Judith Clarke & Nilanjana Roy, 2012. "On statistical inference for inequality measures calculated from complex survey data," Empirical Economics, Springer, vol. 43(2), pages 499-524, October.
    7. Frank A. Cowell & Philippe Kerm, 2015. "Wealth Inequality: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(4), pages 671-710, September.
    8. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    9. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    10. Vladimir Hlasny & Paolo Verme, 2018. "Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data," Econometrics, MDPI, vol. 6(2), pages 1-21, June.
    11. Kaltenberg, Mary & Foster-McGregor, Neil, 2020. "The impact of automation on inequality across Europe," MERIT Working Papers 2020-009, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    12. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    13. Christian Schluter, 2018. "Top Incomes, Heavy Tails, and Rank-Size Regressions," Econometrics, MDPI, vol. 6(1), pages 1-16, March.
    14. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    15. Brian A'Hearn & Stefano Chianese & Giovanni Vecchi, 2020. "Aristocracy and Inequality in Italy, 1861-1931," HHB Working Papers Series 18, The Historical Household Budgets Project.
    16. Stephen P. Jenkins, 2007. "Inequality and the GB2 income distribution," Working Papers 73, ECINEQ, Society for the Study of Economic Inequality.
    17. Abul Naga, Ramses H. & Shen, Yajie & Yoo, Hong Il, 2016. "Joint hypothesis tests for multidimensional inequality indices," Economics Letters, Elsevier, vol. 141(C), pages 138-142.
    18. Mehdi, Tahsin & Stengos, Thanasis, 2014. "Empirical likelihood-based inference for the generalized entropy class of inequality measures," Economics Letters, Elsevier, vol. 123(1), pages 54-57.
    19. Francesco Andreoli & Eugenio Peluso, 2016. "So close yet so unequal: Reconsidering spatial inequality in U.S. cities," Working Papers 21/2016, University of Verona, Department of Economics.
    20. Flachaire, Emmanuel & Nunez, Olivier, 2007. "Estimation of the income distribution and detection of subpopulations: An explanatory model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3368-3380, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:457-470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.